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Distributed Optimization for Shared State Systems:
Applications to Decentralized Freeway Control via

Subnetwork Splitting
Jack Reilly, Member, IEEE, and Alexandre M. Bayen, Member, IEEE,

Abstract—Optimal control problems on dynamical systems
are concerned with finding a control policy which minimizes
a desired objective, where the objective value depends on the
future evolution of the system (the state of the system), which in
turn depends on the control policy. For systems which contain
subsystems that are disjoint across the state variables, distributed
optimization techniques exist which iteratively update subsystems
concurrently and then exchange information between subsystems
with shared control variables. This article presents a method,
based on the asynchronous ADMM algorithm, which extends
these techniques to subsystems with shared control and state
variables, while maintaining similar communication structure.
The method is used as the basis for splitting network flow
control problems into many subnetwork control problems with
shared boundary conditions. The decentralized and parallel
nature of the method permits high scalability with respect to
the size of the network. For highly nonconvex applications,
an efficient method, based on adjoint gradient computations,
is presented for solving subproblems with shared state. The
method is applied to decentralized, coordinated ramp metering
and variable speed limit control on a realistic freeway network
model using distributed model predictive control.

I. INTRODUCTION

F INITE-horizon optimal control is a popular method for
computing predictive control strategies for dynamical

systems [1]–[3], its applicability growing with the increase of
computational power and pervasiveness of physical sensing.
In general, a finite-horizon optimal control problem will take
the following form:

min
x∈X

f(s, x) (1)

subject to: s = g(x) (2)

where x represents the vector of control variables belonging
to the set of feasible controls X (which we may assume to be
Rn for simplicity), s represents the vector of “state” variables,
constrained to be a deterministic function g(x) of the control,
and f is some objective function of the control and state we
wish to minimize.
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Related Work in Distributed Optimization: Much at-
tention has recently been given to distributed methods for
finite-horizon optimal control problems, where g is assumed
to be linear and f is assumed to be quadratic or convex.
Distributed optimization has been found useful for at least
two reasons. Firstly, the parallelizability of the individual sub-
problems allows for faster computation time and better overall
convergence properties [4]–[8]. Secondly, physical systems
often have controls physically distributed in space, creating
a need for distributed control algorithms which limit the
amount of shared information and communication between
subsystems [9]–[11].

Different assumptions on the structure, smoothness, and
convexity of f , X and g leads to different convergence bounds
and communication bounds. In optimal control, a method
presented in [4] for decoupling the quadratic terms from the
nonquadratic terms leads to efficient caching techniques shown
to be effective in FPGA applications. A distributed gradient
descent-based approach is given in [10], which has O

(
1√
k

)
convergence to the global optimum in the general case, where
k is the number of iterations of the algorithm. A common dual-
decomposition technique employed for distributed optimal
control is the alternating directions method of multipliers [4],
[12], [13] (ADMM), which has been shown to have O

(
1
k

)
convergence under certain assumptions of the smoothness and
decomposability of the objectives [14]. Additionally, an accel-
erated version of ADMM, based on Nesterov’s algorithm [15]
can give O

(
1
k2

)
convergence when the decomposed objectives

are smooth [6].
When the coupling between systems takes on some sparse

form, then one can devise algorithms with limited communica-
tion, which can be beneficial from a latency and architectural
standpoint. Optimal control problems where subsystems have
disjoint state variables but coupled control variables have
been shown to be amenable to decomposition techniques
for distributed optimization [7], [10], where [9] shows how
ADMM decomposition leads to less communication without
a decrease in solution accuracy.

In [7], [9], [10], the subsystems with disjoint state are
modeled as agents tasked with optimizing over their own
subsystem, where agents which share some control variables
are connected by some edge in a communication graph.
Thus, the more sparse the coupling of systems, the lesser
the communication requirements. Such a model is referred
to as multi-agent optimization [14]. In systems with coupling
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due to physical proximity, this consequence has the added
benefit of requiring only physically local communication, and
removes the need for any centralized controller or hub for
communication. In [14], an asynchronous form of ADMM
(subsequently referred to as A-ADMM) is presented for multi-
agent optimization, which permits agents to update themselves
in arbitrary order, with communication only required between
neighboring agents. The method in [14] does not present an
accelerated version and is shown to have O

(
1
k

)
convergence.

Subsystems with Coupled State: One recurring assump-
tion in the distributed optimization literature above is that
subsystems have disjoint state variables. For network flow
problems, where subsystems correspond to partitions of a
network into subnetworks, such an assumption does not hold.
To see this, one can imagine a traffic light timing plan
causing a traffic jam which spreads across the entire freeway
network [16] or a bottleneck of planes in an airspace affecting
flight times throughout the air network [1]. As a result, it is not
possible to decompose the subsystems by only sharing control
parameters without coupling each subsystem to all control
variables and modeling the evolution of the entire network
within each subsystem.

Yet, freeway traffic and air traffic subsystems have a very
sparse coupling in their state variables. For instance, discrete
traffic models [17], [18] often assume that the speed of traffic
on a particular section of road is only a function of the speed of
traffic on neighboring links. Thus, each subnetwork subsystem
would only share a small number of control variables and
state variables with other subsystems, precisely those which
physically share a border with the subsystem.

To exploit the sparsity of such systems, we develop a multi-
agent optimization algorithm based on A-ADMM [14] which
permits each agent (subsystem) to share both control and state
variables with neighboring agents, while still converging to
the globally optimal control, given the standard assumption
of convex objectives and linear constraints. At a high level,
the algorithm “relaxes” the state variables external to an
agent while constraining internal state variables to adhere to
the subsystem’s dynamics. Since A-ADMM eventually brings
all shared variables between agents into consensus (i.e. the
difference between shared variables converges to zero), the
relaxed external state variables will converge to satisfying the
original constraints.

The rest of the article is structured as follows. Section II
presents the general problem of posing a multi-agent optimal
control problem, with the additional assumption that an agent
may share both state and control variables with other agents.
The problem is then posed in a form amenable to using the
A-ADMM algorithm in Section III. A systematic approach
to modeling an optimal control problem over a dynamical
network as a multi-agent distributed optimization over subnet-
works is given in Section IV, as well as a discussion on the
suitability of the method for scaling model predictive control
on dynamical networks. In Section V, we give an adjoint-
based approach to solving the agent’s subnetwork optimal
control problem, suitable for applications with complex, non-
convex dynamics. We then present the application of dis-
tributed, predictive ramp-metering and variable speed limit

(VSL) control on freeway networks in Section VI followed by
numerical results in Section VII with comparisons to existing
distributed approaches. We conclude with some final remarks
in Section VIII.

Notation: For a vector x, let x[i] be the i’th element of x,
and similarly let y[i, j] be the element of the two-dimensional
array in the i-th row and j-th column. Let card(x) be the
cardinality of a vector x, i.e. the number of elements in x. If
we have a vector x with card(x) = N and let w be a subset of
{1, . . . , N}, then let xw denote the vector selecting only those
elements x[i] where i ∈ w. We define the concatenation of
vectors x ∈ Rm and y ∈ Rn as the resulting vector z ∈ Rn+m

constructed by appending the elements of y onto x. If a vector
d is the concatenation d = (a, b, c), then let [d]a be the sub-
vector of d corresponding to the original element a.

II. PROBLEM STATEMENT

We wish to solve an optimization problem with a “free”
global variable x ∈ Rn and a “dependent” variable s ∈ Rm
which is a deterministic function of x, where n is the number
of “control” parameters and m is the number of “state”
parameters. We assume there is a partition of s into D disjoint
subsets,

s =
(
su(1), . . . , su(D)

)
,

where u(i) are subsets of {1, . . . ,m}. The objective function
is assumed to be the sum of D sub-objectives, where sub-
objective fi, i ∈ {1, . . . , D} is a convex function of only
partition su(i). 1 Furthermore, su(i) is assumed to be a function
of some subset of x and s. Explicitly, for each i ∈ 1, . . . , D,
there is well-defined, linear function gi and subsets v(i) and
w(i) (w(i) ∩ u(i) = ∅) where

su(i) = gi
((
xv(i), sw(i)

))
. (3)

The tuple
(
xv(i), sw(i)

)
is the concatenation vector of xv(i)

and sw(i). We omit the double parenthesis in the rest, for
simplicity. One can view u(i), v(i), w(i), as the internal state,
the control, and the external state, respectively, of group i. We
can now express the optimization problem we wish to solve
as:

min
x,s

D∑
i=1

fi
(
su(i)

)
(4)

subject to: su(i) = gi
(
xv(i), sw(i)

)
∀i ∈ 1, . . . , D. (5)

Figure II shows an example of how different sub-objectives
may be coupled and Table I summarizes how one constructs
the u(i), v(i), w(i) subsets from the state and control coupling.

Dependency Graph: There are no assumptions on the
subsets v(i) and w(i), which implies that the value of each
sub-objective fi is coupled to not just the sub-vector su(i),
but also the global variable x, and other sub-vectors su(j).
We can express this coupling as a dependency graph (V,E),

1We omit the dependency of the objective on the control variable in this
presentation for simplicity. It is still easy in this form to add control variables
into the objective by duplicating a control variable into the state.
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Group 1 Group 2 Group 2

Control 
Variables

Fig. 1. Optimization problem partitioned into D = 3 disjoint state variable
groups. Arrows allow us to compute the u(i), v(i), w(i) subsets for each
group i, where → indicates functional dependency through Equation 3

TABLE I
SUBSETS u(i), v(i), w(i) FOR FIGURE II EXAMPLE.

Group i u(i) v(i) w(i)
i = 1 {1,2} {1} {}
i = 2 {3} {1,2} {4,5}
i = 3 {4,5} {3} {3}

where vertices V are each sub-problem i ∈ {1, . . . , D} and
an edge (i, j) ∈ E exists whenever

1) w(i) ∩ u(j) 6= ∅ (gi is a function of some variable in
su(j)), or

2) v(i) ∩ v(j) 6= ∅ (there is some x[k] which both gi and
gj depend upon).

Let the neighboring edges of node i ∈ V be denoted by
E(i). A dependency graph construction for the example in
Figure II is summarized in Table II. The intersection of subsets
from Table I across different subproblems reveals that edges
exist for groups (1, 2) and (2, 3), but not for (1, 3).

In Section III, we devise a distributed algorithm solve
Problem (4)-(5)- with the following requirements:

1) Each processing node corresponds to a sub-objective
node in the dependency graph.

2) Each node can be updated in parallel.
3) Each node i only exchanges information with its neigh-

bors E(i) in the dependency graph (V,E).
4) The algorithm is asynchronous and decentralized, i.e.

no central process is required and nodes can be updated
arbitrarily.

III. ASYNCHRONOUS-ADMM ALGORITHM

We reformulate Problem (4)-(5) to permit a distributed
solution method via A-ADMM. For each node i ∈ V , we
duplicate the “shared variables” xv(i) and sw(i) as x̄i and s̄i
respectively, and reformulate Problem (4)-(5) as:

TABLE II
SUBSET INTERSECTION TERMS FOR FIGURE II EXAMPLE.

Edge (i, j) v(i) ∩ v(j) u(i) ∩ w(j) w(i) ∩ u(j)
i, j = 1, 2 {1} {} {}
i, j = 2, 3 {} {3} {4,5}
i, j = 1, 3 {} {} {}

min
x

D∑
i=1

fi
(
su(i)

)
(6)

subject to: su(i) = gi(x̄i, s̄i) ∀i (7)
s̄i = sw(i) ∀i ∈ 1, . . . , D (8)
x̄i = xv(i) ∀i ∈ 1, . . . , D (9)

The variable replication allows Constraint (7) in Problem (6)
to be decoupled across nodes. To decouple Constraints (8)
and (9), we follow a modified process from [14].

First, we duplicate each subset su(i) with a vector si local
to node i ∈ V , and then concatenate all local variables into
a single variable yi = (si, x̄i, s̄i), such that yi is restricted to
the space:

Yi = {(si, x̄i, s̄i) : si = gi(x̄i, s̄i)}.

Finally, we can repose Constraints 2 and 3 in an edge-wise
fashion as follows. For each edge e = (i, j) ∈ E, let yi,e and
yj,e be the sub-vectors of yi and yj that are coupled through
gj and gi, respectively. Then Problem (4)-(5) becomes:

min
(yi∈Yi)i∈V

D∑
i=1

fi([yi]s) (10)

subject to: yi,e = yj,e ∀e ∈ E (11)

By moving the edge constraints into the objective through a
standard Lagrange multiplier approach, and adding a regular-
ization term which is equal to zero for feasible solutions [13],
we can construct the augmented Lagrangian L formulation
(with tunable augmenting coefficient ψ), and express the
optimization problem as:

min
y=(yi)i∈V

max
λ=(λe)e∈E

L(y, λ) := (12)

D∑
i=1

fi([yi]s)+ (13)∑
e∈E

λTe (yi,e − yj,e) + ψ‖yi,e − yj,e‖22,

The above form permits us to apply the A-ADMM al-
gorithm as proposed and analyzed in [14], and shown in
Algorithm 1. At a high-level, the algorithm iterates by first
randomly selecting an edge e = (i, j) from E. Then, nodes
i and j update yi and yj respectively by minimizing the
Lagrangian in Equation (12) in parallel, while holding all other
variables {λ′e}e′ 6=e, {yk}i/∈{i,j} constant. The new yi and yj
values are used to update the dual λe variables by applying a
dual-ascent method [13]. Finally, the process is repeated ad-
infinitum by updating a new edge selected from E, until some
convergence or termination criteria are reached.

Section V presents an efficient solution method, based on
discrete adjoint computations, to solving the subproblem on
Line 4 of Algorithm 1.

Remark. The equation in Line 4 differs slightly from the
augmented Lagrangian in Equation (12) and is the result of
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Algorithm 1 Asynchronous Edge Based ADMM
1: while Not Converged do
2: Select edge e = (i, j) ∈ E
3: for q ∈ (i, j) do
4:

yk+1
q ← arg min

y∈Yq

fq([y]s)−∑
e∈E(q)

Λq,eλ
k,T
e

(
yq,e − ȳke

)
+
ψ

2
‖yq,e − ȳke‖22

5: end for
6: λk+1

e ← λk+1
e − ψ

2

(
yk+1
i,e − y

k+1
j,e

)
7: for q /∈ (i, j), e′ 6= e do
8: yk+1

q = ykq , λk+1
e′ ← λke′

9: end for
10: end while
11: Note: ỹke = 1

2

(
yki,e + ykj,e

)
12: Note: Λq,e =

{
1 q = i

−1 q = j
e = (i, j)

a number of algebraic manipulations, which are explicitly
derived in [13], [14].

Remark. We introduce the asymmetric coefficient Λq,e to
account for the fact that the terms for edge e ∈ E(q) in Line 4
depend upon whether the updating problem q was the first or
second term (i or j) in the edge pair.

IV. DISTRIBUTED OPTIMIZATION ON COUPLED
DYNAMICAL SYSTEMS

Physical transport systems, such as freeway traffic net-
works [17], [19] or gas pipelines [20] are often naturally
expressed as a network of individual dynamical systems which
influence one another at contact points, or junction points.
Given the coupling in dynamics across the entire network,
optimizing over partitioned sub-systems, with no communi-
cation between systems, will lead to greedy solutions over
the individual systems and sub-optimal global results [5].
Thus, any distributed, globally optimal control scheme applied
to such systems must account for the shared state between
the systems. We now show how this can be done using the
multi-agent A-ADMM approach. Furthermore, we show how
the algorithm naturally leads to a communication scheme
which mirrors the physical structure of the underlying physical
network.

Assume some discrete-time, discrete-space dynamical sys-
tem which possesses a network-like dynamical coupling in
space. Specifically, consider a graph

(
V d, Ed

)
(not to be con-

fused with the dependency graph (V,D) in Section II, where
the d superscript is added to denote the dynamical network)
where Ed represent the discrete-space cells and V d are the
junction points where cells connect to one another, i.e. each
cell in Ed has a corresponding upstream and downstream junc-
tion both in V d. Each discrete space “cell” c ∈ {1, . . . , Nd}
has for each discrete time step k ∈ {1, . . . , Td} both a control
variable x[c, k] ∈ R and a state variable s[c, k] ∈ R. The

(a) Complete network (b) Solid subnetwork with two
shared links

(c) Dotted subnetwork with three
shared links

(d) Dash-dotted subnetwork with
three shared links

Fig. 2. A network is partitioned into three subnetworks: solid, dashed, and
dash-dotted. Each subnetwork will share state with neighboring subnetworks.
For a subnetwork i, the cells neighboring i, denoted by Ed

i , are shown in
black, while those excluded from Ed

i are shown in gray.

variable s[c, k] is assumed to be a function of all state and
control variables that satisfy two conditions:
• the time-step is k − 1, and
• the cell must share a junction with cell c.
Next, we wish to express a distributed optimization problem

subject to the above dynamics in the form of Problem (4)-
(5). To do so, we assume a partition of

(
V d, Ed

)
into D

sub-networks, which implies a partition of Ed into D subsets(
Ed1 , . . . , E

d
D

)
and assume an objective f which is splittable

across the state variables internal to each sub-network. This
leads to a state partitioning s =

(
su(1), . . . , su(D)

)
, where

(c, k) ∈ u(i) iff c ∈ Edi .
Based on the two conditions for state dependencies above,

we can deduce that the state of a sub-network depends on the
control and state both internal to the sub-network and directly
neighboring the sub-network. Explicitly, for sub-network i,
we can express the dependent control variables as xv(i) where
(c, k) ∈ v(i) iff c ∈ Edi or c neighbors a cell in Edi . Similarly,
the shared state for sub-network i is sw(i), where (c, k) ∈
w(i) iff c /∈ Edi and c neighbors a cell in Edi . Finally, we
conclude that there exists some update equation gi, specific to
the particular dynamical system, where the constraint on su(i)

can be expressed familiarly as su(i) = gi
(
xv(i), sw(i)

)
.

As an example, we can consider the network in Figure 2a,
which is partitioned into three subnetworks based on line-
style. We see that four of the edges share a single junction
between the three subnetworks. Thus, the dynamics assumed
above implies that each subnetwork will share state with
each other subnetwork. Specifically, the solid-lined network in
Figure 2b shares one cell each from the other two subnetworks,
while the dashed and dash-dotted subnetworks in Figures 2c
and 2d share two cells with the solid subnetwork and one cell
with the opposite subnetwork. We note again that while each
optimizing agent may have different values of the state on
a particular cell in the network during intermediate stages of
the A-ADMM algorithm, each copy of the state will eventually
come into consensus as the shared-state A-ADMM algorithm
converges.

Local Communication Requirements: At this point, all
relevant parameters to Problem (4)-(5) have been specified.
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The assumption on the dynamical network coupling leads to a
desirable dependency graph (V,E) for the system above. Since
each sub-network only requires shared state from neighboring
sub-networks in the sense of the physical network

(
V d, Ed

)
,

then the dependency graph (V,E) is constructed by assigning
a sub-network to each node V and adding an edge (i, j)
to E only for those sub-networks i and j which physically
neighbor each other. Thus, the A-ADMM algorithm guaran-
tees that communication only take place between physically
neighboring systems. This is useful for situations where there
are limitations in the networking capabilities due to physical
distance, such as freeway traffic control systems, where col-
laborations may only exist for those districts near each other.

Furthermore, the formulation allows for a completely de-
centralized and asynchronous implementation of the global
optimization problem. If, for instance, all nodes are managed
by independent agencies with varying computational limits,
then there are several practical benefits to the approach. For
a single sub-network, since only information that is directly
adjacent to other sub-networks needs to be shared with other
sub-networks, much of the internal formulation of the sub-
network can be made completely hidden from the larger
network. The asynchronicity of the algorithm also permits for
neighboring agencies to exchange information in an ad-hoc
manner, and not be bottlenecked by slower updates between
separate sub-networks.

Scalability of Subnetwork Splitting for Model Predictive
Control: A common application of finite-horizon optimal
control is in the context of model predictive control (MPC) [5],
[16], where optimal control policies are recomputed in a
rolling-horizon fashion. Given the optimal control problem
beginning at a time-step t,

min
x={xt,...,xt+T }

f t+Tt (s, x) (14)

subject to: s = gt+Tt (x),

MPC chooses the control policy xt to apply at time-step t
by solving for x = {xt, . . . , xt+T } in Equation (14) using a
prediction horizon of T and updating the objective f t+Tt and
constraints gt+Tt based on the latest estimates of the initial
conditions and boundary conditions.

In applications such as freeway onramp metering, a limiting
factor in choosing an optimization time-horizon is the accuracy
of the predictions of the boundary conditions, or specifically,
anticipating future vehicle demands on freeway onramps. At
some point, increasing the time-horizon will only decrease the
effectiveness of the control due to the deviation in predicted
model state versus reality. Thus, it is often practical to con-
sider the time-horizon fixed in MPC applications, at which
point the scalability with respect to network size becomes of
importance.

For freeway networks with very small branching factors, it
is reasonable to assume the following:
• For each subnetwork, the number of bordering links is

constant.
• The number of shared state and control variables grows

linearly with the time-horizon for each subnetwork.

• The number of subnetworks scales linearly with network
size (for fixed-size subsystems).

One concludes that the amount of communication required
for the A-ADMM subnetwork splitting method would scale
linearly with the network size and quadratically with time-
horizon length. If we were to instead decompose our system,
for instance, across time-slices, the communication require-
ment would scale quadratically with network size and linearly
with time-horizon length. Given our assumption of a fixed
time-horizon, the subnetwork splitting approach for network-
flow MPC has the added benefit of better scaling in the
communication requirements.

V. SOLVING SUB-PROBLEMS VIA THE ADJOINT METHOD

What is not explicitly expressed in Algorithm 1 is a solution
method for Step 4. In the more general case of non-convex
update equations gi and objectives fi, it is difficult to find
even local optima for yi over the space Yi using gradient-
descent methods: a result of the difficulty of projecting and
expensiveness of computing gradients in Yi.

Since [yi]s is a deterministic function of the unconstrained
variables [yi]x̄ and [yi]s̄, it becomes more efficient to eliminate
[yi]s from the search space and concatenate [yi]x̄ and [yi]s̄
into a single “free” variable r̄i := ([yi]x̄, [yi]s̄). Similar to
the convention for yi,e and yj,e, we denote (r̄i,e, r̄j,e) and
(s̄i,e, s̄j,e) as the free variables and constrained state variables,
respectively, shared between nodes i and j. Then we can
repose the sub-optimization in Step 4 in the following way.
We let

f̄i(si, r̄i) :=fi([y]s)−∑
e∈E(i)

Λi,eλ
k,T
e

(
ri,e − r̄ke

)
+
ψ

2
‖ri,e − r̄ke‖22+

∑
e∈E(i)

Λi,eλ
k,T
e

(
si,e − s̄ke

)
+
ψ

2
‖si,e − s̄ke‖22

be the “augmented” sub-objective accounting for the additional
ADMM terms for subproblem i, where r̄e, s̄e denotes the array
mean of ri,e, rj,e and si,e, sj,e respectively. Also, if we let the
concatenated subsystem equations be:

Hi(s, r) := s− gi([r]x̄, [r]s̄),

then we have

(
sk+1
i , r̄k+1

i

)
= arg min

s,r
f̄i(s, r) (15)

subject to: Hi(s, r) = 0 (16)

The form of Problem (15) permits us to apply the discrete
adjoint method [21], [22] to compute gradients of f̄i at some
search point r̄0

i . If we let s0
i be defined so that Hi

(
s0
i , r̄

0
i

)
= 0,

then we can use the fact that the gradient of H with respect
to r is zero (since the right-hand-side is always zero):

∇rHi

(
s0
i , r̄

0
i

)
=
∂Hi

(
s0
i , r̄

0
i

)
∂s

drs+
∂Hi

(
s0
i , r̄

0
i

)
∂r

= 0 (17)
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Combined with the expression for the gradient of f̄i,

∇rf̄i
(
s0
i , r̄

0
i

)
=
∂f̄i
(
s0
i , r̄

0
i

)
∂s

drs+
∂f̄i
(
s0
i , r̄

0
i

)
∂r

(18)

we can substitute out drs, and arrive at the following
expression for the gradient:

∇rf̄i
(
s0
i , r̄

0
i

)
= γT

∂Hi

(
s0
i , r̄

0
i

)
∂r

+
∂f̄i
(
s0
i , r̄

0
i

)
∂r

(19)

subject to:
∂Hi

(
s0
i , r̄

0
i

)
∂s

T

γ = −
∂f̄i
(
s0
i , r̄

0
i

)
∂s

T

(20)

The γ variable is commonly referred as the discrete adjoint
variable, while Equation (20) is referred to as the discrete
adjoint system2. If we assume that gi is a closed-form, smooth
equation, then all partial derivative expressions above are well-
defined, can be derived by hand and can be computed with cost
on the order of a single forward-simulation. Mild conditions
guarantee a solution for γ (see [23]).

As compared to finite-differencing methods, the adjoint
formulation in Equations (19)-(20) reduces the complexity of
computing gradients by a factor proportional to card(r̄i), the
number of free variables. It is shown in [23], that if there are
further sparsity and triangularity assumptions on the ∂Hi

∂s and
∂Hi

∂r̄ matrices, then solving Equations (19)-(20) can be done
with complexity linear in the size of r̄i and si. A system
matching such assumptions is coordinated, freeway onramp
traffic light metering, which is explored in a non-distributed
setting in [23].

VI. DISTRIBUTED, COORDINATED OPTIMAL RAMP
METERING AND VSL

We apply distributed optimization via subnetwork splitting
to the problem of coordinated, predictive freeway onramp
metering and VSL control [5], [16], [24], where traffic lights
on freeway onramps are used to regulate the flow entering
freeway mainlines and speed limits are dynamically adapted
in order to prevent congestion and improve such metrics as
driver travel time and speed variability. The term coordinated
indicates that many traffic lights and VSL signs along a
freeway stretch will act cooperatively, given that conditions
near one onramp or VSL sign may eventually affect conditions
at a neighboring onramp or VSL sign. The term predictive in-
dicates that the metering/VSL strategy should anticipate future
conditions on the roadway using traffic demand predictions
and an underlying model of the evolution of the freeway
system.

Similar to discretized freeway models following the cell
transmission model (CTM) approach [17] taken in [18], [23],
we adopt the Link-Node CTM model presented in [16]. The
network is given as a linear sequence of mainline link, onramp

2The discrete adjoint method for computing gradients of constrained opti-
mization problems is a classical result coming from the first-order stationarity
condition of the discrete KKT system, and we refer the reader to [21] for a
general introduction.

(a) A single freeway
junction near link i.

Subnetwork 1 Subnetworks 2 to D-1 Subnetwork D

(b) Diagram of freeway network with A-ADMM
subnetwork splitting.

Fig. 3. Overview of the freeway ramp metering network and state evolution.
Figure 3a shows the dynamical state and control variables of a particular
junction i on the freeway. The relation between mainline density ρ[i, k],
onramp queues l[i, k], metering control rate c[i, k], VSL ν[i, k], and boundary
condition split ratios β[i, k] for a given time-step k are depicted, and
mathematically expressed in Equations (21)-(27). Figure 3b shows how one
may partition the linear network into subnetworks. While subnetworks may
have internal links and onramps, they will also include links and onramps
immediately upstream and downstream as part of their shared state (denoted
by the dashed-line boxes), giving the appearance of overlapping subnetworks.

and offramp triples3, as depicted in Figure 3. We establish
the state variables of the system as s = {ρ[i, k], l[i, k] : i ∈
[1, N ], k ∈ [1, T ]}, where ρ[i, k] is the number of vehicles
on the mainline link i (with unit length) and l[i, k] is the
number of vehicles queued on onramp i, both at time-step k.
Additionally, the control variables are x = {(c[i, k], ν[i, k]) :
i ∈ [1, N ], k ∈ [1, T ]}, where c[i, k] ∈ R+ is the maximum
vehicles that can leave onramp i at time k (ramp metering
rate), and ν[i, k] is the maximum speed of vehicles on link i
at time k (VSL rate). The following system of equations relate
the state of the freeway at time-step k − 1 to k:

d[i, k] = min(c[i, k], l[i, k]) (21)
σ[i, k] = min(w(ρmax − ρ[i, k]), fmax) (22)
δ[i, k] = min(ν[i, k]ρ[i, k], fmax)(1− β[i, k]) + d[i, k] (23)
f [i, k] = min(ν[i, k]ρ[i, k], fmax) (24)

× min(δ[i, k], σ[i+ 1, k])

δ[i, k]

r[i, k] = d[i, k]
min(δ[i− 1, k], σ[i, k])

δ[i− 1, k]
(25)

l[i, k] = l[i, k − 1] +D[i, k]− r[i, k − 1] (26)
ρ[i, k] = ρ[i, k − 1] + f [i− 1, k − 1](1− β[i, k − 1]) (27)

+ r[i, k − 1]− f [i, k − 1]

The recursive definitions above require an initial condition,

s0 = {ρ0[i], l0[i] : i ∈ [1, N ]},

and boundary conditions at the left and right extremes of the
network, (

sL, sR
)

= {
(
sL[k], sR[k]

)
: k ∈ [0, T ]},

both of which are assumed given. Equations (21)-(25) can be
seen as intermediate computations required to update the state
variables given in Equations (26)-(27), and not explicitly part
of the state vector. We note that the offramps are modeled
as stateless, infinite-capacity sinks, and thus are only captured
through β[i, k], the fraction of vehicles which desire to exit

3Freeway models with more general network topologies exist [19] and allow
direct application of the subnetwork splitting method presented herewithin. We
limit our discussion to linear freeway networks to simplify the presentation.
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offramp i rather than continue to mainline link i+ 1 at time-
step k. A diagram of the state and control variables for a single
junction is given in Figure 3a. The above dynamics are non-
convex, but it is shown in [16] that, assuming some maximum
velocity V and ramp flow C, if a set of variables satisfy the
following linear inequalities and equalities,

f [i, k] ≤ min(ρ[i, k]V, fmax) (28)
f [i, k](1− β[i+ 1, k]) + r[i+ 1, k] (29)

≤ min(w(ρmax − ρ[i+ 1, k]), fmax)

r[i, k] ≤ min(C, l[i, k]) (30)
Eqns (26)− (27),

then a control c, ν can be constructed such that f, r, ρ, l, c, ν
satisfy Equations (21)-(27). Thus, we can employ the adjoint
method presented in Section V on the relaxed problem in
order to improve sub-objectives during each iteration of the
A-ADMM algorithm with a guarantee of convergence to
the global optimum. We omit the explicit c, ν reconstruction
procedure and refer the reader to [16] for details.

As an objective, we use total travel time, or the cumulative
time spent by all vehicles on the network. Total travel time is
mathematically expressed as

fTTT =
∑
i,k

ρ[i, k] + l[i, k],

and is decomposable across subnetwork splits.
It is clear from the definitions of s and x above that each

state variable is a direct function of only the state and control
variables of neighboring links at the previous time-step, and
as such, can be decomposed using the subnetwork splitting
method in Section IV. Figure 3b depicts such a splitting, where
each subnetwork also includes the neighboring upstream and
downstream links as boundary conditions.

The dependency graph (V,E) for such a network has a
natural structure, where an edge (i, j) is in E if and only if
j = i+1, and thus a subnetwork need only communicate with
the linear subnetworks immediately upstream and downstream
of itself. Furthermore, only information pertaining to the
bordering links and onramps of a subnetwork needs to be
shared with its neighbors, allowing a subnetwork to conceal
the particular implementation of its internal freeway model
from the rest of the system.

VII. NUMERICAL RESULTS

All simulations were run on a personal laptop with a 2.4
GHz Intel Core i5 using 8 GB of RAM. The code was
implemented in Scala [25], and makes use of the general-
purpose nonlinear optimization software IpOpt [26].

A. Convergence with Number of Subnetworks

We first investigate the numerical convergence of the A-
ADMM metering and VSL controller on a model 4-lane
freeway network spanning 12 miles (N = 12) with 3 onramps
and 2 offramps over a 2 hour simulation (T = 120). We
consider three different partitionings by splitting the network

Fig. 4. Space-time diagrams of mainline (row 1) and onramp (row 2) vehicle
count evolution for 12 mile network. Large congestion pockets appearing for
(A) no control case are reduced using coordinated holding of vehicles on
onramps and decreased speed limits during periods of congestion (C). Lack
of communication between subsystems (B) leads to an ineffective control
policy.

into 2, 3 and 4 subnetworks, respectively. We also simulated
the following alternative controllers for comparison:

• No control: Metering rates are set to maximum ramp flux
rates C and speeds are set to free flow velocity V .

• Centralized: A single optimal control problem over the
entire freeway is solved as a convex optimization prob-
lem. This solution gives the theoretical lower bound on
total travel time.

• No communication: Individual subnetworks optimize
over their own decomposed total travel time objective,
with no exchange of information between subnetworks.

• Communicative: Subnetworks iteratively optimize over
decomposed objectives and exchange the resulting pre-
dicted boundary conditions with neighbors until resulting
boundary conditions converge (see [5]). There is no
guarantee of convergence of boundary conditions or of
finding the global optimum.

Figure 4 gives a space-time depiction of the mainline and
onramp vehicle evolution for the no control, no communica-
tion, and A-ADMM controllers.

The convergence results for the 12 mile freeway network
are summarized in Figure 5. The centralized approach is faster
than the distributed approaches (A-ADMM and communica-
tive) as the former does not require an outer communication
loop. As the number of network partitions increases, A-
ADMM converges faster to the optimum due to the paralleliza-
tion of the subnetwork optimizations. Furthermore, the com-
municative algorithm degrades in performance with increasing
number of partitions due to the increase in communication
requirements and lack of global objective coordination. If a
decentralized algorithm is required for architectural reasons,
then the A-ADMM approach is shown to be most desirable
due to the lower degree of coordination than the centralized
approach and better convergence than the communicative
approach.
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Fig. 5. Total travel time vs. computation time for several different different
control schemes and subnetwork (SN) partitionings. The no-communication
results are omitted due to poor performance.

I15 South
(a) Geographical depiction.

Opt. No Con. Cent. MPC No Comm. Comm. A-ADMM
2.572 2.605 2.584 4.529 8.453 2.589

(b) Total travel time summary in 1000 vehicle hours.

Fig. 6. I15 South MPC simulation summary. Figure 6a shows the freeway
under consideration partitioned into 5 subnetworks, while Table 6b gives a
summary of the performance of the different ramp metering/VSL controllers.

B. Distributed MPC for I15 Network

MPC simulations were run on a calibrated model of the
I15 South freeway in San Diego, CA with boundary flow data
taken from measurements recording during a morning rush
hour. The simulation spans 20 miles (N = 32), contains 9
onramps, 8 offramps and runs over a 170 minute window (T =
1000) with an MPC update time of 17 minutes and a horizon
of 25 minutes. The network is partitioned into 5 subnetworks
and is depicted geographically in Figure 6a.

Travel Time Results: Table 6b gives a summary of the
performance of the A-ADMM MPC controller along with
other controllers. The results indicate that the A-ADMM
controller performs nearly as well as the centralized MPC
controller, which can be viewed as a lower-bound on the
performance of MPC controllers with limited horizons. The
communicative and non-communicative approaches were not
able to improve upon no control. The communicative approach
performed worse than the non-communicative approach be-
cause its iterative terminated after reaching a set number
iterations on a highly inefficient solution, due to its lack of
convergence guarantees.

Running Time: The theoretical optimum was allowed to
run until convergence and took approximately 30 minutes
to run. For all MPC controller types, each MPC update

(every 17 simulation minutes) was allowed to run until either
convergence was reached, or until approximately 10 wall-
clock minutes was reached to enforce the constraint that the
algorithms should be of real-time use.

VIII. CONCLUSION

We presented a distributed optimization algorithm based
on the multi-agent A-ADMM formulation, applied to systems
with both shared control and shared state. We showed how the
technique could be used for MPC problems on networked dy-
namical systems to allow subnetworks to update and communi-
cate in a decentralized and asynchronous manner. We derived
a distributed, cooperative freeway ramp metering and VSL
controller based on the technique, and ran simulations on a
realistic freeway network, which demonstrated improvements
in performance over simpler decentralized MPC approaches.
As future work, we will investigate an accelerated [15] ver-
sion of the A-ADMM algorithm and investigate performance
improvements.

ACKNOWLEDGMENTS

We would like to acknowledge Professor Roberto Horowitz,
Dr. Gabriel Gomes, and Dr. Ajith Muralidharan of UC Berke-
ley for their work on linear formulations of freeway optimal
control problems [16], [27] which greatly improved the prac-
tical nature of the theory developed within this work.

REFERENCES

[1] a.M. Bayen, R. Raffard, and C. Tomlin, “Adjoint-based control of a new
eulerian network model of air traffic flow,” IEEE Trans. Control Syst.
Technol., vol. 14, no. 5, pp. 804–818, Sep. 2006.

[2] N. Geroliminis, J. Haddad, and M. Ramezani, “Optimal perimeter
control for two urban regions with macroscopic fundamental diagrams:
A model predictive approach,” IEEE Trans. Intell. Transp. Syst., vol. 14,
no. 1, pp. 348–359, 2013.

[3] A. Kotsialos and M. Papageorgiou, “Efficiency and equity properties
of freeway network-wide ramp metering with AMOC,” Transportation
Research Part C: Emerging Technologies, vol. 12, no. 6, pp. 401–420,
2004.

[4] B. O’Donoghue, G. Stathopoulos, and S. P. Boyd, “A Splitting Method
for Optimal Control.” IEEE Trans. Control Syst. Technol., vol. 21, no. 6,
pp. 2432–2442, 2013.

[5] J. R. D. Frejo and E. F. Camacho, “Feasible Cooperation Based
Model Predictive Control for Freeway Traffic Systems,” Conference on
Decision and Control, vol. 50, no. 2, pp. 5965–5970, 2011.

[6] Y. Pu, M. N. Zeilinger, and C. N. Jones, “Fast Alternating Minimization
Algorithm for Model Predictive Control,” in IFAC World Congress,
2014, p. (To appear).

[7] P. Giselsson, M. D. Doan, T. Keviczky, B. D. Schutter, and A. Rantzer,
“Accelerated gradient methods and dual decomposition in distributed
model predictive control,” Automatica, vol. 49, no. 3, pp. 829–833, 2013.

[8] C. Chen, Z. Liu, W.-H. Lin, S. Li, and K. Wang, “Distributed modeling
in a mapreduce framework for data-driven traffic flow forecasting,” IEEE
Trans. Intell. Transp. Syst., vol. 14, no. 1, pp. 22–33, 2013.

[9] J. F. C. Mota, J. M. F. Xavier, P. M. Q. Aguiar, and M. Püschel, “Dis-
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