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Abstract. We consider the Lighthill-Witham-Richards traffic flow model on a junction com-
posed by one mainline, an onramp and an offramp, which are connected by a node. The onramp
dynamics is modeled using an ordinary differential equation describing the evolution of the queue
length. The definition of the solution of the Riemann problem at the junction is based on an opti-
mization problem and the use of a right-of-way parameter. The numerical approximation is carried
out using Godunov scheme, modified to take into account the effects of the onramp buffer. We
present the result of some simulations and check numerically the convergence of the method.
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1. Introduction. Hydrodynamic models have commonly been used in the lit-
erature to describe the macroscopic evolution of vehicular traffic on roads and have
been successfully generalized to networks in recent years. In the 1950s, Lighthill and
Whitham [22] and Richards [25], independently, proposed a fluid dynamic model for
traffic flow on an infinite single road, using a non-linear hyperbolic partial differen-
tial equation (PDE). The Cauchy problem has successfully been extended to initial-
boundary value problem in [1] and then developed specifically for scalar conservation
laws with concave flux in [19], and for traffic applications in [26]. More recently,
several authors proposed models on networks that take into account different type of
solutions at the intersections, see [5, 6, 9, 10, 13, 14, 15, 16] and the references therein.

In this article, we focus on a junction model designed for a ramp metering prob-
lem. Ramp metering models have been introduced in the engineering community
in a discrete setting, see [23, 24] for details. In this article, we apply a continuous
approach. We consider the scalar Lighthill-Whitham-Richards model on a network
composed of a single junction connecting a mainline, an onramp and an offramp.
The mainline evolution is described by a scalar conservation law, while the onramp
dynamics is modeled by a buffer of infinite capacity, which is defined by an ordinary
differential equation (ODE) depending on the difference between the incoming and
outgoing fluxes at the ramp.

In the following sections, we prove the existence and uniqueness of solutions of
the Riemann problem at the junction. The results are obtained by solving a Linear
Programming (LP) optimization problem. Unlike [11], where the flux through the
junction is maximized, our LP -optimization consists in maximizing the flux on the
outgoing mainline, see Remark 3 below. The offramp is treated as a sink, and a
priority parameter is introduced to ensure uniqueness of the solution. As a modeling
choice, the priority is satisfied in an approximate way, i.e., the priority will not always
be respected, in benefit of flux maximization.
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The article presents numerical approximations of possibly discontinuous solutions
obtained using this model. In particular, we suitably modify the Godunov scheme
to include the boundary conditions at the junction, as in [3, 7], and the ODE de-
scribing the buffer. This allows one to take into account the possible creation of an
additional shock when the buffer empties. The scheme provides accurate numerical
approximations, as shown by the numerical tests provided here.

The article is organized as follows. Section 2 contains some preliminary notations
and definitions, while §3 describes in details the solution of the Riemann problem at
the junction. In §4 we introduce the numerical scheme with the particular boundary
conditions used to compute approximate solutions to the problem. In §5 we present
some numerical tests which show the effectiveness of our approximation. Throughout
the paper, we refer to [2, 8] for the general theory of hyperbolic conservation laws and
to [20, 21] for an introduction to the main numerical concepts.

2. Fundamental Definitions and Notations. We consider a junction with
one mainline I modeled by the real line ]−∞,+∞[, one onramp R1 and one offramp
R2 at x = 0, as illustrated in Figure 2.1.

J
I1 I2

R1 R2

Fig. 2.1: Junction modeled in the article.

The configuration in Figure 2.1 can represent also, more classical junctions with
an offramp before the onramp, provided that they are spatially close that they can
be considered connected at a node. From a macroscopic point of view, this means
that on each mainline segment I1 =] −∞, 0[ and I2 =]0,+∞[, we consider the mass
conservation equation:

∂tρ+ ∂xf(ρ) = 0, (t, x) ∈ R+ × Ii, (2.1)

where ρ = ρ(t, x) ∈ [0, ρmax] is the mean traffic density, ρmax is the maximal density
allowed on the road and the flux function f : [0, ρmax]→ R+ is given by the following
flux-density relation

f(ρ) = ρv(ρ),

where v(ρ) is a smooth decreasing function denoting the mean traffic speed.
Throughout the article, we assume for simplicity that:

(A1) ρmax = 1;
(A2) f(0) = f(1) = 0;
(A3) f is a strictly concave function.

Assumptions (A2) and (A3) ensure existence and uniqueness of a point of maximum
of the flux function ρcr ∈ [0, 1]. A typical example of flux function for the LWR model
is given in Figure 2.2.
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ρρcr ρmax

fmax

f(ρ)

0

Fig. 2.2: Flux function of equation (2.1), commonly referred to as fundamental dia-
gram in the transportation literature.

On the onramp R1 we consider the presence of a buffer modeled by the following
ODE:

dl(t)

dt
= Fin(t)− γr1(t), t ∈ R+, (2.2)

where l(t) ∈ [0,+∞[ is the length of the queue, Fin(t) is the flux that enters the
onramp and γr1(t) is the flux that exits from the onramp.
This particular choice is taken to avoid backward waves on the onramp boundary,
which happens in the case of horizontal queues that consider vehicles arranged over
the length of the roadway. In particular, at the left boundary of the onramp, backward
moving shock waves can result in lost information on the flux that actually enters the
buffer. The presence of the buffer,considered as a vertical queue in which vehicles are
stacked one upon the other, helps accounting for all the flow that enters the onramp,
for details see [17]. For simplicity, we consider the offramp as a sink of infinite capacity
that accepts all the flux entering from the mainline I1, and we assume that no flux
from the onramp is allowed in the offramp.
The Cauchy problem to solve is then:

∂tρi + ∂xf(ρi) = 0, (t, x) ∈ R+ × Ii, i = 1, 2
dl(t)

dt
= Fin(t)− γr1(t), t ∈ R+,

ρi(0, x) = ρi,0(x), on Ii i = 1, 2
l(0) = l0,

(2.3)

where ρi(0, x) represents the initial condition and l0 ∈ [0,+∞[ is the initial load of
the buffer.

This will be coupled with an optimization problem at the junction which will give
the distribution of the traffic among the roads.
We define the demand d(Fin, l) of the onramp, the demand function δ(ρ1) on the
incoming mainline segment corresponding to the density ρ1, and the supply function
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σ(ρ2) on the outgoing mainline segment corresponding to the density ρ2 as follows.

d(Fin, l)=

{
γmax

r1 if l(t) > 0,
min (Fin(t), γmax

r1 ) if l(t) = 0,
(2.4)

δ(ρ1) =

{
f(ρ1) if 0 ≤ ρ1 < ρcr,
fmax if ρcr ≤ ρ1 ≤ 1,

(2.5)

σ(ρ2) =

{
fmax if 0 ≤ ρ2 ≤ ρcr,
f(ρ2) if ρcr < ρ2 ≤ 1,

(2.6)

where γmax
r1 is the maximal flow on the onramp and fmax = f(ρcr) is the maximal

flux on I1 and I2. Moreover, we introduce β ∈ [0, 1] the split ratio of the offramp, and
γr2(t) = βf(ρ1(t, 0−)) its flux.

Definition 2.1. A triple (ρ1, ρ2, l) ∈
2∏

i=1

C0
(
R+; L1 ∩ BV(R)

)
×W1,∞(R+;R+)

is an admissible solution to (2.3) if
(i) ρ1,ρ2 are weak solutions on I1, I2, i.e., ρi : [0,+∞[×Ii → [0, 1], i = 1, 2, such

that ∫
R+

∫
Ii

(
ρi∂tϕi + f(ρi)∂xϕi

)
dxdt = 0, i = 1, 2, (2.7)

for every ϕi ∈ C1
c (R+ × Ii).

(ii) ρi satisfies the Kružhkov entropy condition [18] on (R × Ii), i.e., for every
k ∈ [0, 1] and for all ϕi ∈ C1

c (R+ × Ii), t > 0,∫
R+

∫
Ii

(|ρi − k|∂tϕi + sgn (ρi − k)(f(ρi)− f(k))∂xϕi)dxdt

+

∫
Ii

|ρi,0 − k|ϕi(0, x)dx ≥ 0; i = 1, 2. (2.8)

(iii) f(ρ1(t, 0−)) + γr1(t) = f(ρ2(t, 0+)) + γr2(t).
(iv) The flux of the outgoing mainline f(ρ2(t, 0+)) is maximum subject to

f(ρ2(t, 0+)) = min
(

(1− β)δ(ρ1(t, 0−)) + d(Fin(t), l(t)), σ(ρ2(t, 0+))
)
,

(2.9)
and (iii)

(v) l is a solution of (2.2) for a.e. t ∈ R+.
Remark 1. A parameter P is introduced in the next section to ensure uniqueness

of the solution. P ∈ ]0, 1[ is a right of way parameter that defines the amount of
flux that enters the outgoing road from the incoming mainline and from the onramp.
In particular, Pf(ρ2(t, 0+)) is the flux allowed from the incoming mainline into the
outgoing mainline, and (1 − P )f(ρ2(t, 0+)) the flux from the onramp. The use of a
priority parameter to regulate traffic at intersection was introduced in [4].

3. Riemann problem at the junction. In this section, we construct step by
step the Riemann Solver at the junction. This will be the building block to construct
approximate Godunov scheme (or wave-front tracking) solutions to general Cauchy
problems. We fix constants ρ1,0, ρ2,0 ∈ [0, 1], l0 ∈ [0,+∞[, Fin ∈]0,+∞[ and a priority
factor P ∈]0, 1[. The Riemann problem at J is the Cauchy problem (2.3) where the
initial conditions are given by ρ0,i(x) ≡ ρ0,i in Ii for i = 1, 2. We define the Riemann
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Solver by means of a Riemann Solver RS l̄, which depends on the instantaneous load
of the buffer l̄. For each l̄ the Riemann Solver RS l̄ is constructed in the following
way.

1. Define Γ1 = f(ρ1(t, 0−)), Γ2 = f(ρ2(t, 0+)), Γr1 = γr1(t);
2. Consider the space (Γ1, Γr1) and the sets O1 = [0, δ(ρ1)], Or1 = [0, d(Fin, l̄)];
3. Trace the lines (1− β)Γ1 + Γr1 = Γ2; and Γ1 = P

1−P Γr1;
4. Consider the region

Ω =
{

(Γ1,Γr1) ∈ O1 ×Or1 : (1− β)Γ1 + Γr1 ∈ [0,Γ2]
}
. (3.1)

Different situations can occur depending on the value of Γ2:

(i) Demand limited case: Γ2=(1− β)δ(ρ1(t, 0−)) + d(Fin, l̄).
We set Q to be the point (Γ̂1,Γ̂r1) such that Γ̂1 = δ(ρ1(t, 0−)), Γ̂r1 = d(Fin, l̄) and
Γ̂2 = (1− β)δ(ρ1(t, 0−)) + d(Fin, l̄), as illustrated in Figure 3.1(a).

(ii) Supply limited case: Γ2 = σ(ρ2(t, 0+)).
We set Q to be the point of intersection of (1− β)Γ1 + Γr1 = Γ2 and Γ1 = P

1−P Γr1. If

Q ∈ Ω, we set (Γ̂1,Γ̂r1)=Q and Γ̂2 = Γ2, see Figure 3.1(b); if Q /∈ Ω, we set (Γ̂1,Γ̂r1)=S
and Γ̂2 = Γ2, where S is the point of the segment Ω∩ (Γ1,Γr1) : (1− β)Γ1 + Γr1 = Γ2

closest to the line Γ1 = P
1−P Γr1, obtained solving the problem

minimize

∥∥∥∥∥
(

γr1(t)
f(ρ1(t, 0−))

)
−

[(
γr1(t)

f(ρ1(t, 0−))

)
· αP

]
αP

∥∥∥∥∥
2

2

subject to f(ρ2(t, 0+)) = (1− β)f(ρ1(t, 0−)) + γr1(t),

γr1(t) ≤ d(Fin, l̄),

f(ρ1(t, 0+)) ≤ δ(ρ1),

(3.2)

where αP is the normalized vector αP =
1√

P 2 + (1− P )2

(
P

1− P

)
, see Fig.3.1(c).

As can be seen in Figure 3.1(c), it might not be possible to respect the priority given
by the parameter P if we want to maximize also the flux.

Once we have determined Γ̂1 and Γ̂2, we can define ρ̂1, ρ̂2 in a unique way as
follows. We recall that ρ = ρcr ∈ ]0, 1[ is the unique point of maximum of the flux
and we define the function τ as follows, for details see [11].

Definition 3.1. Let τ : [0, 1]→ [0, 1] be the map such that:
(i) f(τ(ρ)) = f(ρ) for every ρ ∈ [0, 1];

(ii) τ(ρ) 6= ρ for every ρ ∈ [0, 1] \ {ρcr}.
Given

ρ1(0, ·) ≡ ρ1,0 , ρ2(0, ·) ≡ ρ2,0,

there exists a unique couple (ρ̂1, ρ̂2) ∈ [0, 1]2 such that

ρ̂1 ∈
{
{ρ1,0}∪]τ(ρ1,0), 1] if 0 ≤ ρ1,0 ≤ ρcr,
[ρcr, 1] if ρcr ≤ ρ1,0 ≤ 1;

f(ρ̂1) = Γ̂1, (3.3)

and

ρ̂2 ∈
{

[0, ρcr] if 0 ≤ ρ2,0 ≤ ρcr,
{ρ2,0} ∪ [0, τ(ρ2,0)[ if ρcr ≤ ρ1,0 ≤ 1;

f(ρ̂2) = Γ̂2. (3.4)
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Γr1d(Fin, l̄)

Γ1

δ(ρ1)

Γ2 = (1− β)Γ1 + Γr1

Q

(a) Demand limited case

Γr1d(Fin, l̄)

Γ1

δ(ρ1)

Γ2 = (1− β)Γ1 + Γr1

Γ1 = P
1−P Γr1

Q

(b) Supply limited case: intersection inside Ω

Γr1d(Fin, l̄)

Γ1

δ(ρ1)

Γ2 = (1− β)Γ1 + Γr1

Γ1 = P
1−P Γr1

Q

S

Γr1d(Fin, l̄)

Γ1

δ(ρ1)

Γ2 = (1− β)Γ1 + Γr1

Γ1 = P
1−P Γr1

Q

S

(c) Supply limited case: intersection outside Ω

Fig. 3.1: Solutions of the Riemann Solver at the junction.

For the incoming road the solution is given by the wave (ρ1,0, ρ̂1), while for the
outgoing road the solution is given by the wave (ρ̂2, ρ2,0). In this setting, given any
initial data ρ1,0, ρ2,0, we can define RS l̄ : [0, 1]2 → [0, 1]2 by

RS l̄(ρ1,0, ρ2,0) = (ρ̂1, ρ̂2). (3.5)

Now given the initial load of the buffer l0 = l̄, the function l(t) at time t > 0 is given
according to the following possibilities, determined by straight integration of (2.2):

1. If Fin < Γ̂r1, then

l(t) =

{
l0 + (Fin − Γ̂r1)t if 0 < t < l0

Γ̂r1−Fin
,

0 if t > l0
Γ̂r1−Fin

.
(3.6)

2. If Fin ≥ Γ̂r1, then

l(t) = l0 + (Fin − Γ̂r1)t ∀t > 0. (3.7)
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Remark 2. The presence of the buffer can create waves when the buffer empties
at time t̄ = −l0/(Fin − Γ̂r1) > 0 (with new values of the densities ρ̄1, ρ̄2) if Fin < Γ̂r1,
see Figure 3.2.
No waves are created instead if Fin ≥ Γ̂r1, due to the infinity capacity of the buffer. A
similar behavior is found in [13, 14] in a PDE-ODE model for supply chains. However,
that model displays only waves with positive speeds, which suits supply chains behavior,
and deals with a network which is mainly constituted by 1×1 junctions where the queue
is feeded by the previous link and not by an external inflow. Moreover, when the
network is extended to include also m×n junctions, the condition on the positivity of
the speed ensures that boundary conditions are well defined without need for additional
optimization problems at the nodes.

t̄

t

x0

ρ1,0 ρ2,0

ρ̂1 ρ̂2

ρ̄2ρ̄1

Fig. 3.2: Solution of the Riemann Problem.

The following theorem ensures consistency of RS l̄.
Theorem 3.2. Consider a junction J and fix a priority parameter P ∈ ]0, 1[.

For every ρ1,0, ρ2,0 ∈ [0, 1] and l0 ∈ [0,+∞[, there exists a unique admissible solution
(ρ1(t, x), ρ2(t, x), l(t)) compatible with the Riemann Solver proposed in Section 3 and
the solution is given by

ρ1(t, x)=


ρ1,0 if x ≤ ŝ1t,

ρ̂1 if ŝ1t < x ≤ min
(

0, s̄1(t− t̄)
)

ρ̄1 if x > min
(

0, s̄1(t− t̄)
)
,

(3.8)

ρ2(t, x)=


ρ2,0 if x ≤ ŝ2t,

ρ̂2 if ŝ2t < x ≤ max
(

0, s̄2(t− t̄)
)
,

ρ̄2 if x > max
(

0, s̄2(t− t̄)
)
,

(3.9)

where ŝ1, s̄1, ŝ2, s̄2 are given by the Rankine-Hugoniot condition and t̄ = −l0/(Fin −
Γ̂r1). Moreover, for a.e. t > 0, it holds

(ρ1(t, 0−), ρ2(t, 0+)) = RSl(t)(ρ1(t, 0−), ρ2(t, 0+)).

The proof of the theorem is deferred after some preliminary results. The mapping
τ(ρ) as defined in (3.1) and the functions δ(ρ1), d(Fin, l) and σ(ρ2) yield the following
properties.



8 DELLE MONACHE, REILLY, SAMARANAYAKE, KRICHENE, GOATIN AND BAYEN

Lemma 3.3. If (ρ̂1, ρ̂2) is a solution of the Riemann problem with initial data
(ρ1,0, ρ2,0), then the following holds:

δ(ρ1,0) ≤ δ(ρ̂1),

σ(ρ2,0) ≤ σ(ρ̂2),

d(Fin, l0) ≤ d(Fin, l).

Proof. For the incoming road it holds:

δ(ρ1,0) ≤ δ(ρ̂1) if 0 ≤ ρ1,0 ≤ ρcr,

δ(ρ1,0) = δ(ρ̂1) if ρcr ≤ ρ1,0 ≤ 1. (3.10)

In particular, if ρ1,0 ∈ [0, ρcr], either ρ̂1 ∈ ]τ(ρ1,0), 1] or ρ̂1 = ρ1,0. In the first
case, δ(ρ1,0) = f(ρ1,0) ≤ fmax = δ(ρ̂1), see Figure 3.3(a), while in the second
case δ(ρ1,0) = f(ρ1,0) = f(ρ̂1) = δ(ρ̂1), see Figure 3.3(b). On the other hand, if
ρ1,0 ∈ [ρcr, 1] then ρ̂1 ∈ [ρcr, 1] and δ(ρ1,0) = fmax = δ(ρ̂1), see Figure 3.3(c).

ρ

, f(ρ)δ(ρ)

Shock

ρ̂1ρ1,0

δ(ρ1,0)

δ(ρ̂1) = fmax(ρ)

(a) 0 ≤ ρ1,0 ≤ ρcr

ρ

, f(ρ)δ(ρ)

ρ1,0 = ρ̂1

δ(ρ1,0) = δ(ρ̂1)
fmax(ρ)

(b) ρ1,0 = ρ̂1

Rarefaction

Shock

ρ

, f(ρ)δ(ρ)

ρ1,0

fmax(ρ) = δ(ρ1,0) = δ(ρ̂1)

(c) ρcr ≤ ρ1,0 ≤ 1

Fig. 3.3: Instantaneous evolution of the demand in the Riemann problem (incoming
road).

Using the same approach for the outgoing road, we have:

σ(ρ2,0) = σ(ρ̂2) if 0 ≤ ρ2,0 ≤ ρcr,

σ(ρ2,0) ≤ σ(ρ̂2) if ρcr ≤ ρ2,0 ≤ 1, (3.11)

In particular, if 0 ≤ ρ2,0 ≤ ρcr then 0 ≤ ρ̂2 ≤ ρcr as well, and σ(ρ2,0) = fmax = σ(ρ̂2),
see Figure 3.4(c). Otherwise ρcr ≤ ρ2,0 ≤ 1, and either ρ̂2 = ρ2,0 or ρ̂2 ∈ [0, τ(ρ2,0)[.



A PDE-ODE SYSTEM FOR A JUNCTION WITH RAMP BUFFER. 9

In the first case, σ(ρ2,0) = f(ρ2,0) = f(ρ̂2) = σ(ρ̂2), see Figure 3.4(b). In the second
case, σ(ρ2,0) = f(ρ2,0) ≤ fmax = σ(ρ̂2), see Figure 3.4(a).

Shock

ρ

, f(ρ)σ(ρ)

σ(ρ2,0)

ρ̂2 ρ2,0

fmax(ρ) = σ(ρ̂2)

(a) ρcr ≤ ρ2,0 ≤ 1

ρ

, f(ρ)σ(ρ)

σ(ρ2,0) = σ(ρ̂2)

ρ2,0 = ρ̂2

fmax(ρ)

(b) ρ2,0 = ρ̂2

Rarefaction

Shock

ρ

, f(ρ)σ(ρ)

ρ2,0

fmax(ρ) = σ(ρ2,0) = σ(ρ̂2)

(c) 0 ≤ ρ2,0 ≤ ρcr

Fig. 3.4: Instantaneous evolution of the supply in the Riemann problem (outgoing
road).

For the onramp, we consider two different cases, when the buffer is initially empty
and when it is not. In both cases different situations can occur.

(L1) Initially empty buffer: l(0) = 0⇒ d(Fin, l(0)) = min (Fin, γ
max
r1 ).

(L1.1) Buffer increases: l(0+) > 0⇒ d(Fin, l(0+)) = γmax
r1 .

If d(Fin, l(0)) = Fin, then d(Fin, l(0)) ≤ d(Fin, l(0+)).
If d(Fin, l(0)) = γmax

r1 , then d(Fin, l(0)) = d(Fin, l(0+)).
(L1.2) Buffer remains empty: l(0+) = 0⇒ d(Fin, l(0+)) = min (Fin, γ

max
r1 ).

Hence, d(Fin, l(0)) = d(Fin, l(0+)).

(L2) Buffer initially not empty: l(0) > 0⇒ d(Fin, l(0)) = γmax
r1 .

(L2.1) Buffer grows (decreases) linearly: 0 < l(0) < l(0+) (0 < l(0+) < l(0))⇒
d(Fin, l(0+)) = γmax

r1 .
Hence, d(Fin, l(0)) = d(Fin, l(0+)).
This concludes the proof.

Now we are ready to prove Theorem 3.2.
Proof. Existence and uniqueness follow by construction of the Riemann Solver

detailed at the beginning of this section.
In the following we will show the proof of the consistency of RSl(t).
Fix t0 ≥ 0. If (ρ1(t0, 0−), ρ2(t0, 0+)) is a solution of the Riemann Solver, correspond-
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ing to the same buffer value l(t0) we need to show that

RSl(t0)(ρ1(t0, 0−), ρ2(t0, 0+)) = (ρ1(t0, 0−), ρ2(t0, 0+)).

Without loss of generality, we fix t0 = 0 and we keep the same notation used in the
proof of Lemma 3.3.
We show that the optimal point in the feasible set Ω, as defined in (3.1), resulting
from the Riemann Solver does not change. From the results of Lemma 3.3 it is
straightforward to say that the set Ω either increases between times t = 0 and t > 0
or does not change, see Figures 3.5 and 3.6. Now, we need to prove that the optimal
point does not change. We treat the supply constrained and the demand limited cases
separately.

Γr1d(Fin, l0) d(Fin, l(0+))

Γ1

σ(ρ2,0) = σ(ρ̂2)

δ(ρ1,0)

δ(ρ̂1)

Q

(a) Q ∈ Ω

Γr1d(Fin, l0) d(Fin, l(0+))

Γ1

σ(ρ2,0) = σ(ρ̂2)

δ(ρ1,0) = δ(ρ̂1)
S

Q

(b) Q /∈ Ω, Γ̂1 = δ(ρ1,0)

Γr1d(Fin, l0) = d(Fin, l(0+))

δ(ρ̂1)

Γ1

σ(ρ2,0) = σ(ρ̂2)

δ(ρ1,0)

S

Q

(c) Q /∈ Ω, Γ̂r1(0) = d(Fin, l0)

Fig. 3.5: Supply constrained junction problems.

1. Supply constrained junction problem, see Figure 3.5.
We assume that we are supply limited at t = 0. In this case, by construction of the
Riemann Solver, it holds ρ2,0 = ρ̂2 and hence σ(ρ2,0) = σ(ρ̂2). The priority line is
fixed, the point of intersection Q does not change.

(i) Optimal solution inside Ω, see Figure 3.5(a).
Since Q is determined by the intersection of the two lines and Ω can only increase
(δ(ρ1,0) ≤ δ(ρ̂1), d(Fin, l(0)) ≤ d(Fin, l(0+))), we have

(ρ̂1, ρ̂2) = RSl(0)(ρ̂1, ρ̂2).
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(ii) Optimal solution on the border of Ω, Γ̂1 = δ(ρ1,0), see Figure 3.5(b).
We have to prove that the result of the minimization problem (3.2) (the point S in
the figure) does not change. In this case, by construction of the Riemann Solver it
holds ρ1,0 = ρ̂1. This yields δ(ρ1,0) = δ(ρ̂1) by (3.10). Since, d(Fin, l(0)) can only
increase according to the cases (L1) and (L2), it holds

(ρ̂1, ρ̂2) = RSl(0)(ρ̂1, ρ̂2).

(iii) Optimal solution on the border of Ω, Γ̂r1(0) = d(Fin, l(0)), see Figure 3.5(c).
For the onramp, the only case where the demand can increase is the case (L1.1). In this
particular setting, if d(Fin, l(0)) = Fin it holds γr1(0) = Fin and Fin ≤ γmax

r1 . When the
buffer increases we have γr1(0+) = d(Fin, l(0+)) = γmax

r1 , which implies γmax
r1 ≤ Fin.

Hence, Fin = γmax
r1 and d(Fin, l(0)) = d(Fin, l(0+)). The mainline demand can only

increase. Hence,

(ρ̂1, ρ̂2) = RSl(0)(ρ̂1, ρ̂2).

2. Demand constrained junction problem, see Figure 3.6.
Ω = Ω(ρ1,0, l(0)) = Ω(ρ̂1, l(0)). In fact, ρ1,0 = ρ̂1 and for the onramp it holds
γmax

r1 = Fin (as in the previous point), and this yields δ(ρ1,0) = δ(ρ̂1) and d(Fin, l(0)) =
d(Fin, l(0+)) by (3.10) and (L1) and (L2). The supply can only increase by (3.11).
Hence,

(ρ̂1, ρ̂2) = RSl(0)(ρ̂1, ρ̂2).

Γr1d(Fin, l(0) = d(Fin, l(0+))

Γ1

δ(ρ1,0) = δ(ρ̂1)

σ(ρ̂2)

σ(ρ2,0)
Q

Fig. 3.6: Demand constrained junction problem.

Moreover, the limiting side of Ω does not change, i.e., it is not possible to pass from
a demand constrained junction problem to a supply constrained one and viceversa.
This follows for the fact that σ(ρ2,0) = σ(ρ̂2) when we have a supply constrained
junction problem, Figure 3.5 and d(Fin, l(0)) = d(Fin, l(0+)), δ(ρ1,0) = δ(ρ̂1) when we
have a demand constrained junction problem, Figure 3.6.
This concludes the proof.

Remark 3. The proposed model is a variant of the junction model considered
in [5] in the 2 × 2 case. In [5], the traffic distribution across the junction is given
by a distribution matrix A, subject to technical conditions that ensure uniqueness of
the solution. In our case, since we suppose that no flux from the onramp is directed



12 DELLE MONACHE, REILLY, SAMARANAYAKE, KRICHENE, GOATIN AND BAYEN

into the offramp, the distribution matrix would look as: A =

(
1− β 1
β 0

)
. Clearly,

as the offramp gets more congestioned, β decreases. If we solve the model proposed
in [5] using this distribution matrix, there can be cases in which the solution gives
zero onramp flux, see Figure 3.7(a). This is due to the choice of maximizing the flow
throughout the junction. In fact, in this way, the model tends to satisfy the mainline
demand before the onramp one. This does not reflect what happens in reality, since the
demand allocation depends on the number of lanes available for each inflow, for details
see [17]. Hence, we propose a model that fixes this issue balancing the flux between the
two incoming roads by the introduction of a right-of-way parameter. In particular, the
priority coefficient keeps the maximization point far from the axis, avoiding blocking,
see Figure 3.7(b).

Γr1d(Fin, l̄)

Γ1

δ(ρ1,0)

σ(ρ2,0) = (1− β)γ1 + γr1

Q

(a)

Γr1d(Fin, l̄)

Γ1

δ(ρ1,0)

σ(ρ2,0) = (1− β)γ1 + γr1

Γ1 = P
1−P γr1

Q

(b)

Fig. 3.7: Comparison between Coclite-Garavello-Piccoli model [5](left) and our model
(right).

Remark 4. This model extends the use of a priority parameter, as introduced
in [4], to the case of 2 × 2 junctions. In [4], the authors use the priority parameter
only for merging (2 × 1) junctions treating 2 × 2 junctions with a traffic distribution
matrix which can result, in our setting, in onramp blocking as explained in the previous
remark.

4. Numerical Approximation. In order to find approximate solutions, we
adapt the classical Godunov scheme to the problem, with some adjustment due to
the presence of the buffer.
We define a numerical grid in (0, T )× R using the following notation:

(i) ∆x is the fixed space grid size;
(ii) ∆tn is the non-uniform time grid size given by the CFL condition;
(iii) (tn, xj) = (tn−1 + ∆tn, j∆x) for n ∈ N and j ∈ Z are the grid points.

For a function v defined on the grid we write vnj = v(tn, xj) for j, n varying on a
subset of Z and N respectively. We also use the notation unj for u(tn, xj) when u is a
continuous function on the (t, x) plane.

4.1. Godunov Scheme. The Godunov scheme as introduced in [12] is based on
exact solutions to Riemann problems. The main idea of this method is to approximate
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the initial datum by a piecewise constant function, then the corresponding Riemann
problems are solved exactly and a global solution is simply obtained by piecing them
together. Finally, one takes the mean on the cell and proceeds by induction. Consider
the hyperbolic problem with initial data

∂tu+ ∂xf(u) = 0 x ∈ R, t ∈ [0, T ], (4.1)

u(0, x) = u0(x) x ∈ R. (4.2)

A solution of the problem is constructed taking a piecewise constant approximation
of the initial data:

v0
j =

1

∆x

∫ xj+1/2

xj−1/2

u0(x)dx j ∈ Z, (4.3)

and defining vnj recursively starting from v0
j , as follows.

vn+1
j =

1

∆x

∫ xj+1/2

xj−1/2

v∆(tn+1, x)dx. (4.4)

Under the CFL condition

∆tn max
j∈Z

∣∣∣λnj+ 1
2

∣∣∣ ≤ 1

2
∆x (4.5)

the waves generated by different Riemann problems do not interact. Above, λn
j+ 1

2

is

the wave speed of the Riemann problem solution at the interface xj+ 1
2

at time tn.

Under the condition (4.5) the scheme can be written as

vn+1
j = vnj −

∆tn

∆x
(g(vnj , v

n
j+1)− g(vnj−1, v

n
j )), (4.6)

where numerical flux g takes in general the following expression:

g(u, v) =

{
minz∈[u,v] f(z) if u ≤ v,
maxz∈[v,u] f(z) if v ≤ u. (4.7)

4.2. Boundary conditions and conditions at the junctions. Here we im-
pose the boundary conditions for the incoming and the outgoing roads at the endpoint
not connected to the junction. We also assign boundary conditions at the endpoints of
the roads connected to the junction. In both cases we will use the classical approach
for road networks as introduced in [3].

Boundary conditions. Each road is divided in J + 1 cells numbered from 0
to J . For the incoming road, in practice, we proceed defining

vn+1
0 = vn0 −

∆tn

∆x
(g(vn0 , v

n
1 )− f(vn0 )),

where f(vn0 ) is the value of the flux at the boundary.
An outgoing boundary can be treated analogously,

vn+1
J = vnJ −

∆tn

∆x
(f(vnJ )− g(vnJ−1, v

n
J )),

with f(vnJ ) the outgoing flux.
Since we are dealing with Riemann problems at the junction, the formulation of
absorbing boundary conditions is equivalent to the one with the ghost cells which is
common in literature, see for details [3, 5, 27].
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Conditions at the Junction. For I1, that is connected at the junction at the
right endpoint, we set

vn+1
J = vnJ −

∆tn

∆x
(Γ̂1 − g(vnJ−1, v

n
J )),

while for the outgoing road, connected at the junction at the left endpoint, we have

vn+1
0 = vn0 −

∆tn

∆x
(g(vn0 , v

n
1 )− Γ̂2),

where Γ̂1 and Γ̂2 are the maximized fluxes computed in §3.
Remark 5. For Godunov scheme there is no need to invert the flux f to compute

the corresponding density in the scheme, as the Godunov flux coincides with Riemann
flux. In this case it suffices to insert the computed maximized fluxes directly into the
scheme.

4.3. ODE Treatment. Let us consider now the buffer modeled by (2.2) on the
onramp. At each time step tn = tn−1 + ∆tn we compute the new value of the queue
length according to two possible cases, with Euler first order integration.

1. If Fin(tn) < Γ̂r1

ln+1 =

{
ln + (Fin(tn)− Γ̂r1)∆tn for tn+1 < t̄,
0 otherwise .

2. If Fin(tn) ≥ Γ̂r1

ln+1 = ln + (Fin(tn)− Γ̂r1)∆tn.

Above, Γ̂r1 is the maximized flux described in §3, Fin(tn) is the flux entering the
onramp at tn given by

Fin(tn) =
1

∆tn

∫ tn+1

tn
Fin(t)dt,

and t̄ is the time at which the buffer empties. We can calculate the time at which the
buffer can empty for each time step ∆tn:

t̄ = − ln

Fin(tn)− Γ̂r1

+ tn. (4.8)

4.4. Modified Godunov Scheme. Godunov scheme cannot be applied as it is
when the buffer empties as noted in [7], because the solution could potentially not
be self-similar. If the buffer empties, at some time step ∆tn, we might have multiple
shocks at the junction. In this case we divide the time step ∆tn = (tn, tn+1) in two
sub-intervals ∆ta = (tn, t̄) and ∆tb = (t̄, tn+1), as in Figure 4.1, with t̄ being defined
in (4.8). Then, we solve in one time step two different Riemann Problems at the
junction. For ∆ta we solve the classical Godunov scheme. For the ∆tb we solve a new
Riemann Problem at the junction in which the value of the queue length is l = 0.
The junction conditions are

vn+1
J = vt̄J −

∆tb
∆x

(
Γ̂t̄

1 − g(vnJ−1, v
t̄
J)
)
, (4.9)

vn+1
0 = vt̄0 −

∆tb
∆x

(
g(vt̄0, v

n
1 )− Γ̂t̄

2

)
, (4.10)



A PDE-ODE SYSTEM FOR A JUNCTION WITH RAMP BUFFER. 15

where with the superscript t̄ we indicate the value computed at t = t̄ in the previous
time step ∆ta.

∆t

xJ+ 1
2

= x− 1
2

xJ x0

∆ta

tn

t̄

tn+1

∆tb

Fig. 4.1: Junction in the case of emptying buffer.

Remark 6. We point out that in our case it is not necessary to introduce an
explicit correction on the ODE as done in [7] since at time t̄ we compute ex novo the
Riemann problem at the junction with a queue length equal to zero.

5. Numerical Results. For illustration, we choose a concave fundamental dia-
gram with the following flux function:

f(ρ) = Vmaxρ(1− ρ),

where Vmax is the maximal velocity of the traffic flow. In this case the Godunov
numerical flux is given by

g(u, v) =


min (f(u), f(v)) if u ≤ v,
f(u) if v < u < ρcr,
fmax if v < ρcr < u,
f(v) if ρcr < v < u.

(5.1)

In this section we present some numerical tests performed with the scheme previously
described. We introduce the formal order of convergence µ of a numerical method

µ =
ln(TOTerr)

ln(dx)
, (5.2)

where the L1-norm error is given by

TOTerr =

2∑
i=1

‖uie − uic‖L1 . (5.3)

where uie and uic are the exact solution and the computed solution in each road,
respectively. We show some numerical results obtained applying Godunov scheme to
problem (2.3). Tables 5.1 and 5.2 provide the values of the L1-error (5.3) and the
order of convergence (5.2). Here we deal with a mainline of length 8 parametrized
by the interval [−4, 4] with the node placed at x = 0, such that I1 = [−4, 0] and
I2 = [0, 4.] In all the simulations we fix Vmax = 1, P = 0.7, β = 0.2, γmax = 0.5,
l0 = 0.2 and Fin = 0.05.
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1. Case I: We consider the following initial data

ρ1(0, x) = 0.6, ρ2(0, x) = 0. (5.4)

The values of the initial conditions creates a shock on the incoming mainline and a
rarefaction on the outgoing one. After a time t = 5.3 we can see the rarefaction caused
by the buffer that empties in the incoming mainline I1, as illustrated in Figure 5.1.
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Fig. 5.1: Evolution in time of the density in the incoming mainline (above, left), on
the outgoing mainline (above, right) and evolution of the flux in the onramp (bottom,
left) and in the offramp (bottom, right), corresponding to initial data (5.4) and a
space step discretization ∆x = 0.01.

Table 5.1 collects the values of the L1-error and of the order of convergence at time
T = 10.
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dx L1-error µ
0.02 3.69 · 10−2 0.8432
0.01 1.49 · 10−2 0.9133
0.005 7.21 · 10−3 0.9322
0.002 1.10 · 10−3 1.0962
0.001 2.23 · 10−4 1.2170

Table 5.1: Errors and order of convergence for the Godunov scheme at time T = 10,
corresponding to initial data (5.4).

2. Case II: We consider the following initial data

ρ1(0, x) = 0.1, ρ2(0, x) = 0.6. (5.5)

In this case, the values of the initial conditions are chosen such that the wave produced
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Fig. 5.2: Evolution in time of the density in the incoming mainline (above, left), on
the outgoing mainline (above, right) and evolution of the flux in the onramp (bottom,
left) and in the offramp (bottom, right), corresponding to initial data (5.5) and a
space step discretization ∆x = 0.01.

by the buffer that empties can be seen in the outgoing mainline. In particular, in this
case no waves are generated at initial time. The only wave generated is a shock which
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appear once that the buffer empties at time t = 1.53, as shown in Figure 5.2. Table
5.2 reports the L1-error and the order of convergence.

dx L1-error µ
0.02 1.70 · 10−2 1.0464
0.01 1.67 · 10−2 0.8890
0.005 1.44 · 10−2 0.8066
0.002 9.39 · 10−3 0.9878
0.001 3.57 · 10−4 1.2474

Table 5.2: Errors and order of convergence for the Godunov scheme at time T = 3,
corresponding to initial data (5.5).

6. Conclusions. This article introduces a model of a 2 × 2 junction with an
onramp and an offramp. The onramp is modeled by an ODE which represent a
vertical buffer. This way of handling boundary conditions makes possible not to lose
flow information. The junction flow distribution is solved through a LP -optimization
problem, which maximizes the flow in the outgoing mainline. Moreover, a right-of-
way parameter is introduced to ensure the uniqueness of the solution and a good
representation of field experiences. The model is solved numerically using a modified
Godunov scheme that takes into account the waves that can be produced when the
buffer empties. Some numerical tests are presented to show the stability and accuracy
of the scheme. Moreover, from the analysis of the L1 error, the convergence of the
scheme is demonstrated numerically.
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