Nash Equilibria on Parallel Networks with Horizontal Queues

Motivation and results

Outline

  1. Introduction
    • Congestion games
    • Two-mode latency functions
    • Network and assumptions
  2. Enumerating Nash equilibria
    • Definition
    • Allowable congestion modes
    • Bounding number of equilibria
  3. Best Nash equilibrium (BNE)
    • Defining single link, free flow equilibria (SLFF)
    • Existence of SLFF equilibrium
    • Definition of best Nash equilibrium (BNE)
    • Algorithm for BNE
  4. Price of stability for two-link network
    • Price of anarchy / Definition
    • Solution for our network
    • Analysis

Congestion games

Non-decreasing latency functions

  • Congestion games literature usually assumes a non-increasing latency ($\frac{d\ell}{dx} \ge 0$)
    • Unique mapping from flow to latency
  • Latencies are equal for all occupied links
    • All unoccupied have greater or equal latencies
  • Equilibrium is essentially unique given demand $r=\sum_i x_i$.

Network

New class of latencies: from traffic theory

  • Because vehicles take up physical space (thus, horizontal queues), density of vehicles is important quantity.
  • Fundamental Diagram
    Density $\rho$ $(\frac{cars}{length})$ $\rightarrow$ Vehicle flow $x$ ($\frac{cars}{time}$)
  • Single flow $x'$ does NOT have unique density
  • Two distinct modes
    • Free flow $\left(\rho^-\right)$: few cars moving quickly
    • Congested $\left(\rho^+\right)$: many cars moving slowly
    Can express velocity $v$:
    $$ v\left(\rho\right)=\frac{x\left(\rho\right)}{\rho} $$
    Constant velocity in free flow

New class: density function to flow mapping

  • We can derive latency from fundamental diagram $f$ as a function of $\rho$:
    $$ \ell\left(\rho\right) \propto v\left(\rho\right)^{-1} = \frac{\rho}{x\left(\rho\right)} $$
  • Can also express latency as non-unique mapping from flux
  • Introduce binary variable $m$:
    $$ m = \begin{cases} 0 & \text{free flow} \\ 1 & \text{congestion} \end{cases} $$
    Then latency can be uniquely determined from flow $x$ and mode $m$...
Free Flow Congestion Congestion Free Flow

Two-mode congestion function

Definition: Latency
\begin{eqnarray} \ell_n: [0, x_n^{\max}] \times \{ 0,1 \} & \rightarrow & \mathbb{R}_+ \\ \left(x_n, m_n \right) & \mapsto & \ell_n = \ell_n\left(x,m\right) \end{eqnarray}

Subject to the following conditions:

  • $\ell_n( \cdot ,0) = a_n$ constant
  • $\ell_n(\cdot ,1)$ is decreasing from $(0, x_n^{\max})$ onto $(a_n, +\infty)$
  • $\lim_{x_n \rightarrow x_n^{\max}} \ell_n(x_n ,1) = a_n$
Note:
Assume $a_1 < a_2 < \ldots < a_n$.

Outline

  1. Introduction
    • Congestion games
    • Two-mode latency functions
    • Network and assumptions
  2. Enumerating Nash equilibria
    • Definition
    • Allowable congestion modes
    • Bounding number of equilibria
  3. Best Nash equilibrium (BNE)
    • Defining single link, free flow equilibria (SLFF)
    • Existence of SLFF equilibrium
    • Definition of best Nash equilibrium (BNE)
    • Algorithm for BNE
  4. Price of stability for two-link network
    • Price of anarchy / Definition
    • Solution for our network
    • Analysis

Nash equilibria: definition

Nash equilibria are any flow assignment such that there is no incentive any flow to switch links.

Definition 1
An assignment $\left(x,m\right)\in\mathbb{R}_+^{N} \times \left\{ 0,1\right\} ^{N}$
for a game instance $\left(N,r\right)$ is a Nash equilibrium, if $$ \forall n: x_n > 0 \Rightarrow \ell_n \left(x_n,m_n\right)\le\ell_k\left(x_k,m_k\right) $$

Nash equilibria: allowable modes

  • Number of possible modes is combinatoric (exponential in # of links)
  • For Nash equilibria, can reduce to linear in # of links
Property
If link $k$ is congested, then links $< k$ are also congested

Why?: $\forall j < k, a_j < a_k \le \ell_k \left(x_k, 1\right)$

Property
If link $k$ is in the support and in free flow, then all links $< k$ are congested, and all links $>k$ are not in the support.

Why?: $\forall j > k, a_j > a_k = \ell_k \left(x_k, 0\right)$

Lemma
For instance $(N, r)$, there are at most $2N$ Nash equilibria.

Outline

  1. Introduction
    • Congestion games
    • Two-mode latency functions
    • Network and assumptions
  2. Enumerating Nash equilibria
    • Definition
    • Allowable congestion modes
    • Bounding number of equilibria
  3. Best Nash equilibrium (BNE)
    • Defining single link, free flow equilibria (SLFF)
    • Existence of SLFF equilibrium
    • Definition of best Nash equilibrium (BNE)
    • Algorithm for BNE
  4. Price of stability for two-link network
    • Price of anarchy / Definition
    • Solution for our network
    • Analysis

Single link free flow equilibria (SLFF)

Definition
For $1\leq n\leq k\leq N$, congestion flow $\hat{x}_n \left(k \right)$ is the unique flow in $[0,x^{\max}_n]$ that satisfies $$ \ell_{n}(\hat{x}_n \left(k\right),1)=a_{k} $$
Definition: SLFF equilibrium
$$ \begin{eqnarray} \bar{m}^{k} & := & (1,\dots,1,\overset{k}{0},\dots,0)\\ \bar{x}^{k,r} & := & (\hat{x}_1 \left(k\right), \hat{x}_2 \left(k\right), \ldots, \hat{x}_{k-1}\left(k\right), r-\sum_{n=1}^{k-1}\hat{x}_n\left(k\right), 0, \dots, 0) \end{eqnarray} $$

Existence of SLFF equilibria

Lemma
If there exists an equilibria, then there exists an SLFF equilibria.

Proof: by induction, iteratively shrink the support

Corollary
Given any equilibria, there exists an SLFF equilibria with smaller or equal cost.

Status:

Best Nash equilibria (BNE)

Definition: Best Nash equilibrium
$$ \text{BNE} \left( N,r \right) = \underset{x,m\in \text{NE}\left(N,r\right)}{\arg \min}C\left(x,m\right) $$

BNE is the equilibrium that minimizes total cost (we can show this to be unique).

Theorem: Best Nash equilibrium
The BNE for a network $\left(N,r\right)$ is the SLFF with the smallest support.
Runs in $O\left(N^2\right)$ (NE for non-decreasing latencies requires solution of convex optimization problem)

Procedure $BNE\left(N,r\right)$

$\textbf{Inputs:}$ Size of the network $N$, demand $r$
$\textbf{Outputs:}$ Best Nash equilibrium $(x, m)$
$\quad$for $k \in \{1, \dots, N\}$
$\quad$let $(x, m)$ = freeFlowConfig($k$)
$\quad$if $x_k \in [0, x^{\max}_k]$
$\quad$$\quad$return $(x,m)$
return No-Solution

Procedure $freeFlowConfig\left(k\right)$

$\textbf{Inputs:}$ Free-flow link index $k$
$\textbf{Outputs:}$ Assignment $(x,m)=(\bar{x}_k\left(r\right),\bar{m}_k)$
for $i \in \{ 1, \dots, N \}$
$\quad$if $i < k$
$\quad$$\quad$$x_i = \hat{x}_i\left(k\right)$, $m_i = 1$
$\quad$elseif $i$ == $k$
$\quad$$\quad$$x_i = r - \sum_{n=1}^k x_n$, $m_i = 0$
$\quad$else
$\quad$$\quad$$x_i = 0$, $m_i = 0$
return $(x,m)$

Outline

  1. Introduction
    • Congestion games
    • Two-mode latency functions
    • Network and assumptions
  2. Enumerating Nash equilibria
    • Definition
    • Allowable congestion modes
    • Bounding number of equilibria
  3. Best Nash equilibrium (BNE)
    • Defining single link, free flow equilibria (SLFF)
    • Existence of SLFF equilibrium
    • Definition of best Nash equilibrium (BNE)
    • Algorithm for BNE
  4. Price of stability for two-link network
    • Price of anarchy / Definition
    • Solution for our network
    • Analysis

Price of Stability/Anarchy

Definition: Price of stability
$$ POS\left(N,r\right) = \frac{\underset{x,m\in NE\left(N,r\right)}{\min} C\left(x,m\right)} {\underset{m, \sum x = r}{\min} C\left(x,m\right)} = \frac{BNE\left(N,r\right)}{SO\left(N,r\right)} $$

Social Optimum

Social Optimum
$$ SO\left(N,r\right) = \underset{m, \sum x = r}{\min} C\left(x,m\right) $$
  • Social Optimum is the lowest cost achievable for $\sum x = r$.
  • For our network, solution is straight-forward:
    • Start on link with lowest latency
    • Either:
      • Fill until demand is satisfied and Stop
      • Fill to maximum capacity of link and move to link with next lowest latency
$m_{SO}=\left(0,0,\ldots\right)$

Social Optimum

BNE

Thank you for listening!

Questions?

/