

Security Analysis of Freeway Systems: A Distributed Control Approach

Jack Reilly - Dissertation Talk

Connected Corridors

"Reduce congestion and improve travel time reliability along fifty corridors throughout the state of California"

- Mission Statement

CC System Architecture

Overview

Distributed Consensus-finding Controller

Security Analysis via Ramp Metering Attacks

Model predictive control

Model Predictive Control: Ramp Metering

The Italian Job (2003)

The *Italian Job* (2003) The "real" *Italian Job* (2007)

YOU ARE HERE: LAT Home \rightarrow Collections \rightarrow Los Angeles

Key signals targeted, officials say

Two accused of hacking into L.A.'s traffic light system plead not guilty. They allegedly chose intersections they knew would cause major jams.

January 09, 2007 | Sharon Bernstein and Andrew Blankstein | Times Staff Writers

The *Italian Job* (2003) The "real" *Italian Job* (2007) Waze / Google hacked (2014)

Students hack Waze, send in army of traffic bots

TECHNOLOGY / 25 MARCH 14 / by NICHOLAS TUFNELL

AND DIGITAL EDTIONS

Two Israeli students have successfully hacked popular

The *Italian Job* (2003) The "real" *Italian Job* (2007) Waze / Google hacked (2014) Sensys Attack (2014)

Hackers Can Mess With Traffic Lights to Jam Roads and Reroute Cars

BY KIM ZETTER 04.30.14 | 6:30 AM | PERMALINK

Share 851 Tweet 883 8+1 192 in Share 314 Pintt

Security Analysis via Ramp The "real" Italian Job (2007)

Waze / Google hacked (2014)

Sensys Attack (2014)

The

Overview

- Motivation: Connected Corridors
- PDE model for optimal control applications
- Discrete adjoint framework for ramp-metering
- Distributed control for large-scale systems.
- Security analysis via *ramp-metering attacks*

Our model: LWR Network Overview

- ρ Vehicle Density
- f Flow Rate
- ^{*l*} Queue Length
- *u* Metering Rate
- β Turning Rate
- v Free Flow Vel.
- w Cong. Speed
- *D* Ramp Demand

Weak Boundary Conditions: PDE

Strong Boundary Conditions: **ODE**

Delle Monache, M. L., Reilly, J., Samaranayake, S., Krichene, W., Goatin, P., & Bayen, A. M. (2014). A PDE-ODE model for a junction with ramp buffer. *SIAM Journal on Applied Mathematics*, 74(1), 22–39.

Freeway Control Applications

Ramp Metering

SPEED

LIMIT

$$\min_{u_i(t)} J(u) \text{ s.t. } r_i(t) = u_i(t)\tilde{r}_i(t)$$

Variable Speed Limit

Optimal Rerouting

Reilly, J., Samaranayake, S., Delle Monache, M. L., Krichene, W., Goatin, P., & Bayen, A. M. (2014). Adjoint-based optimization on a network of discretized scalar conservation law PDEs with applications to coordinated ramp metering. *Journal of Optimization Theory and Applications (under Review)*.

Delle Monache, M. L., Reilly, J., Samaranayake, S., Krichene, W., Goatin, P., & Bayen, A. M. (2014). A PDE-ODE model for a junction with ramp buffer. *SIAM Journal on Applied Mathematics*, 74(1), 22–39.

Samaranayake, S., Reilly, J., Krichene, W., Delle Monache, M. L., Goatin, P., & Bayen, A. M. (2014). Multi-commodity real-time dynamic traffic assignment with horizontal queuing. *Transportation Science (under review)*

Overview

- Motivation: Connected Corridors
- PDE model for optimal control applications
- Discrete adjoint framework for ramp-metering
- Distributed control for large-scale systems.
- Security analysis via *ramp-metering attacks*

Discretizing via Godunov's Method

CONTINUOUS

DISCRETE

Optimizing Control Via Gradient Descent

Adjoint Formulation

$$\begin{array}{l} \min_{\mathbf{u}\in U} J\left(\mathbf{u},\rho\right) \\ \text{s.t. } H\left(\mathbf{u},\rho\right) = 0 \\ \text{Compute gradient: } \nabla_{\mathbf{u}}J = \frac{\partial J}{\partial \mathbf{u}} + \frac{\partial J}{\partial \rho}\frac{d\rho}{d\mathbf{u}} \\ \text{Eliminate } \frac{d\rho}{d\mathbf{u}} \\ \text{using system: } \nabla_{\mathbf{u}}H = \frac{\partial H}{\partial \mathbf{u}} + \frac{\partial H}{\partial \rho}\frac{d\rho}{d\mathbf{u}} = 0 \\ \end{array}$$

 $\nabla_{u}J =$ $J_{u} + \lambda^{T}H_{u} \Longrightarrow \lambda : \text{Adjoint Variable}$ $H_{\rho}^{T}\lambda = -J_{\rho}^{T} \Longrightarrow \text{Discrete Adjoint Eqn.}$

Exploiting Sparsity of System Coupling

sity of
$$H_{\rho}$$
 ρ_{*}^{0} ρ_{*}^{1} ρ_{*}^{2} $\rho_{*}^{T-3}\rho_{*}^{T-2}\rho_{*}^{T-1}$
 $\begin{pmatrix} h_{*}^{0} \\ h_{*}^{1} \\ h_{*}^{2} \end{bmatrix}$ $\begin{pmatrix} I & 0 & 0 \\ I & 0 & 0 \\ 0 & I & 0 \\ \vdots & \ddots & \vdots \\ h_{*}^{T-3} \\ h_{*}^{T-2} \\ h_{*}^{T-1} \end{bmatrix}$ $\begin{pmatrix} I & 0 & 0 \\ I & 0 & 0 \\ 0 & I &$

- Lower Triangular
- Sparse
- Linear Complexity

I15 FW (San Diego) Simulations.

Increase in Onramp Queue Lengths

Decrease in Mainline Vehicle Density

Reilly, J., Samaranayake, S., Delle Monache, M. L., Krichene, W., Goatin, P., & Bayen, A. M. (2014). Adjoint-based optimization on a network of discretized scalar conservation law PDEs with applications to coordinated ramp metering. *Journal of Optimization Theory and Applications (under Review)*.

I15 MPC Robustness Results

Reilly, J., Samaranayake, S., Delle Monache, M. L., Krichene, W., Goatin, P., & Bayen, A. M. (2014). Adjoint-based optimization on a network of discretized scalar conservation law PDEs with applications to coordinated ramp metering. *Journal of Optimization Theory and Applications (under Review)*.

Aimsun Micro-Simulation

Aimsun I15 Space-time Summary

Contour Summaries

Density (veh / km)

Speed (km / hr)

No Control

No Control

Mainline Travel Time Decrease

Overview

- Motivation: Connected Corridors
- PDE model for optimal control applications
- Discrete adjoint framework for ramp-metering
- Distributed control for large-scale systems.
- Security analysis via *ramp-metering attacks*

Distributed Control Architectures

Existing approaches: Centralized

Existing approaches: Local

Existing approaches: Communicative

Our approach: Consensus Sensitivity

Multi-agent Consensus Optimization: HOW IT WORKS

Asynchronous ADMM Algorithm

 $\min_{\lambda_{e \in E}} J = TTT = \sum_{i} TTT_{i} + \sum_{e} \lambda_{e}^{T} (BC_{e,l} - BC_{e,r})$

 $BC_{e,l}$ def A-ADMM(J i, E): $BC_{e,l}$ While Not Converged: Choose e from E Minimize J i: i = e-Left Minimize J i: i = e-Right $\bullet BC_{e,r}$ Exchange BC's **Maximize** $e-\lambda$ return optimal control

Reilly, J., & Bayen, A. M. (2014). Distributed Optimization for Shared State Systems: Applications to Decentralized Freeway Control via Subnetwork Splitting. *IEEE Transactions on Intelligent Transportation Systems (under Review)*.

I15 Experiment: Metering + VSL

Convergence Time vs. Number of Agents

MPC Travel Time Above Theoretical Optimum

Overview

- Motivation: Connected Corridors
- PDE model for optimal control applications
- Discrete adjoint framework for ramp-metering
- Distributed control for large-scale systems.
- Security analysis via ramp-metering attacks

Traffic System Vulnerabilities

Attack Description	Access	Control	Complexity	Cost
copper theft/clipping wires	physical	low	low	low
replacing a single sensor/actuator	physical	low	low	low
attacking a single sensor/actuator	locality	low	medium	low
replacing a single control box	physical	medium	medium	medium
replacing a set of sensors/actuator	physical	medium	medium	medium
attacking a set of sensors/actuator	locality	low	medium	low
replacing a corridor of control boxes	physical	high	medium	medium
attacking a corridor of control boxes	network	high	high	medium
attacking the control center	network	high	high	high
spoofing GPS data	network	medium	high	medium
attacking navigation software	network	medium	medium	medium

Security of Freeway Systems

Direct Control

Indirect Control

SmartRoads project

Reilly, J., Martin, S., Payer, M., Song, D., & Bayen, A. M. (2014). On Cybersecurity of Freeway Control Systems: Analysis of Coordinated Ramp Metering Attacks. *Transportation Research Part B - Methodological (under Review)*.

Indirect Control: Sensor Spoofing

Direct Control: High-level Objectives

CATCH ME IF YOU CAN

Achieving high-level objectives via Multi-objective Optimization

UI Diagram

Actual Slider Implementation

Interactive vs. A Posteriori Optimization

Interactive

A posteriori

Box Objective on I15 Freeway

Box Objective

$J = (1 - \alpha)TTT_{\text{out of box}} - \alpha TTT_{\text{in box}}$

SmartRoads Box Objective

Morse Code Attack

[Console Log]

pirate@hackysack.hack>> Your jam is ready to be simulated, take a close look

- pirate@haolgsack.hack-> Taking control of the freeway...
- pirate@hackysack.hack>> Converting to morea...
- pirete@hackgsack.hack>> Analyzing your initials...
- pirate@haolgsack.haolc>> Your jam is ready to be simulated, take a close look
- pinste@hackysack.hack>> Taking control of the freeway...
- pirate@hackysack.hack>> Converting to morse...
- pirate@hackysack.hack>> Analyzing your initials...
- pirate@hackysack.hack>> Simulation loaded

Freeway Painter

Conclusions

Real-world application and robustness

General and extensible framework

Improves w/ estimation and prediction advances.

Acknowledgments

Thank you for listening! Questions?

A SSCRAM WE AIM YOULS A BEARLEY AND AN A RAMINE BARLY REPORTED TO MAKING BELICHT GEAR REVIEWE HEAVER HE Santha Swarnakake Tadim Hahre (2014) and a scrame and the scrame an

40 YEARS IN THE FAST LANE!