

Traffic Control Systems Security: Coordinated Ramp Metering Attacks

Jack Reilly

Work with Professor Alexandre Bayen Sebastien Martin Mathias Payer

Overview of Talk

- * Traffic Control Infrastructure
 - * Actual Attack Examples
- * SmartRoads: Traffic/Cybersecurity Testbed
- * Coordinated Ramp Metering Attacks
 - * Optimal Control
 - * Multi-objective Optimization
- * Attack Examples
 - * Aiding a fleeing vehicle
 - * Creating precise congestion patterns

SmartRoads: Cyber-physical Security on Traffic Networks

- * Traffic management has two components:
 - * Physical sensors and traffic lights
 - * Virtual control and estimation algorithms
- Compromise of cyber traffic systems has been demonstrated* in the wild.
- * Potential attack vectors numerous:
 - * Broadcasting fake accident reports
 - * Compromise of metering light network.
- * <u>Resiliency to attack</u> through fault detection and modeling/sensing discrepancies.

Freeway Traffic systems **Flow Sensors** Ramp Meter Control Center **Optimize Light Timing**

Compromise : complete takeover

UNIVERSITY OF CALIFOR

Compromise : spoofing the sensors

Vulnerability Points

UNIVERSITY OF CAL

Vulnerability Points Taxonomy

Attack Description		Access	Control	Complexity	Cost
copper theft/clipping with	ires	physical	low	low	low
replacing a single senso	r/actuator	physical	low	low	low
attacking a single senso	r/actuator	locality	low	medium	low
replacing a single control	ol box	physical	medium	medium	medium
replacing a set of sensor	rs/actuator	physical	medium	medium	medium
attacking a set of sensor	rs/actuator	locality	low	medium	low
replacing a corridor of o	control boxes	physical	high	medium	medium
attacking a corridor of c	control boxes	network	high	high	medium
attacking the control ce	nter	network	high	high	high
spoofing GPS data		network	medium	high	medium
attacking navigation sol	îtware	network	medium	medium	medium

SmartRoads Architecture

SmartAmerica Scenario

Coordinated Ramp Metering Attacks

MAXIMIZE Attack Objective

Finite Horizon Optimal Control Formulation

Discretize continuous PDE dynamics (Godunov's method)

$$H_{i,t} = \rho_{i,t} - \rho_{i,t-1} + \frac{\Delta t}{\Delta x} (f_{i,t-1}^{\text{in}} - f_{i,t-1}^{\text{out}}) = 0$$

* **Objective:** State tracking $\min_{u \in U} J = \sum_{i} \sum_{t} \| \rho_{i,t} - \overline{\rho}_{i,t} \|$

Finite-horizon Optimal Control Problem

Adjoint Formulation

$$\begin{split} \min_{\mathbf{u}\in U} J\left(\mathbf{u},\rho\right) \\ \text{s.t. } H\left(\mathbf{u},\rho\right) &= 0 \\ \end{split}$$
Compute gradient: $\nabla_{\mathbf{u}}J = \frac{\partial J}{\partial \mathbf{u}} + \frac{\partial J}{\partial \rho} \frac{d\rho}{d\mathbf{u}}$
Easy Hard
$$\begin{split} \text{Eliminate } \frac{d\rho}{d\mathbf{u}} \text{ using system dynamics: } \nabla_{\mathbf{u}}H &= \frac{\partial H}{\partial \mathbf{u}} + \frac{\partial H}{\partial \rho} \frac{d\rho}{d\mathbf{u}} = 0 \\ \nabla_{\mathbf{u}}J &= \\ J_{u} + J_{\rho}\rho_{u} + \lambda^{T} \left[H_{\rho} + H_{u}\right] = \\ J_{\rho} + \lambda^{T}H_{\rho}\rho_{u} + \left(J_{u} + \lambda^{T}H_{u}\right) \end{split}$$

FOUNDATIONS OF RESILIENT CYBER-PHYSICAL SYSTEMS

Coordinated Freeway Control using Adjoint Methods

Composable Goals

Dynamics Weather DYNAMICS Incidents/Accidents Max-Onramp Queues

.

Coordinated Freeway Control using Adjoint Methods

Composable Goals

Coordinated Freeway Control using Adjoint Methods

Composable Goals

Gradient Descent

Compute gradient of constrained problem via <u>adjoint</u>

$$\min_{\mathbf{u}\in U} J\left(\mathbf{u},\rho\right) \qquad \qquad \nabla_{\mathbf{u}}J = J_{u} + \lambda^{T}H_{u}$$

s.t.
$$H(\mathbf{u}, \rho) = 0$$
 s.t. $H_{\rho}^{T} \lambda = -H_{u}^{T}$

- * Embed within gradient descent loop:
 - * 1) Compute new state ρ^k : $H(\rho^k, u^k) = 0$ [forward sim]
 - * 2) Compute gradient $\nabla_{u} J(\rho^{k}, u^{k})$
 - * 3) Update $u^{k+1} = f(u^1, ..., u^k, \nabla_u J^k)$ [e.g. L-BFGS]
 - * 4) Loop $k \leftarrow k+1$

Multi-objective Optimization for Attacks

- Goal: Achieve success on many conflicting goals simultaneously
- * Solution: Scalarization
 - * Objective -> linear combination of sub-objectives.

Interactive Optimization

* Use human expertise to find proper a_i coefficients during exploration

Interactive Optimization

* Use human expertise to find proper a_i coefficients

Box Attack Sim: 115 Freeway in San Diego

- * Create isolated, precise jam over predetermined time.
- Balance between maximizing jam in "box" and minimizing free-flow outside box.

 $f = \alpha f_{\text{true hav}} + (1 - \alpha) f_{\text{also routside how}}$

$$\alpha = .3$$

UNIVERSITY OF CALIFORNIA 🌙

Box Attack Sim: 115 Freeway in San Diego

Box Attack Sim: 115 Freeway in San Diego 09:80:01.200 3

Morse Code Attack on the Freeway

- Use Box Objective is "building block" for more sophisticated attacks
- * Example: Write Morse code on freeway with traffic jams

Morse Code Attack on the Freeway

SmartRoads: Hacking Freeway Congestion Home Freeway Speed Viewer Act I: Jam Creator Act II: Morse Attack Act III: Jam Painter

Type your initials and watch a "personalized" jam take place along the freeway.

Continue to Act III

[Console Log]

pirate@hackysack.hack>> Your jam is ready to be simulated, take a close look

pirate@hackysack.hack>> Taking control of the freeway...

pirate@hackysack.hack>> Converting to morse...

pirate@hackysack.hack>> Analyzing your initials...

pirate@hackysack.hack>> Simulation loaded

pirate@hackysack.hack>> *** Demo 2 : write your initials ***

Drawing **Cal** On the Freeway

Attack Example: CATCH ME IF YOU CAN

- * Attacker wishes to escape vehicles chasing him.
- * Three objectives:
 - $*f_1$ Maximize congestion behind driver
 - $*f_2$ Maximize speed change **directly** behind driver trajectory
 - $*f_3$ Minimize travel time otherwise (avoid suspicion)

Attack Example: CATCH ME IF YOU CAN

A posteriori Optimization

* Explore a_i space, creating a "representative" subset of Pareto solutions

Open Questions

- * Risk To Reward Ratio
 - * How costly to society are the attacks?
 - * How costly is the <u>implementation</u> of the attacks?
- * Connected Vehicles/Infrastructure Security
 - * What vulnerabilities exist when vehicles are in the loop?
- * Prevention
 - * How can we leverage knowledge traffic dynamics to prevent attacks?

Publications

- Reilly, J., Martin, S., Payer, M., & Bayen, A. M. (2014). On Cybersecurity of Freeway Control Systems: Analysis of Coordinated Ramp Metering Attacks. Transportation Research Part B Methodological, (In Review)
- * Reilly, J., Krichene, W., Delle Monache, M. L., Samaranayake, S., Goatin, P., & Bayen, A. M. (2014). Adjoint-based optimization on a network of discretized scalar conservation law PDEs with applications to coordinated ramp metering. Journal of Optimization Theory and Applications (under Review).
- Reilly, J., & Bayen, A. M. (2014). Distributed Optimization for Shared State Systems: Applications to Decentralized Freeway Control via Subnetwork Splitting. Journal of Computational Physics (In Preparation).
- * Delle Monache, M. L., Reilly, J., Samaranayake, S., Krichene, W., Goatin, P., & Bayen, A. M. (2014). A PDE-ODE model for a junction with ramp buffer. SIAM Journal on Applied Mathematics, 74(1), 22-39.

Thank you for listening!

Questions?

