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+ Traffic Control Infrastructure
+ Actual Attack Examples
+ SmartRoads: Traffic/Cybersecurity Testbed
+ Coordinated Ramp Metering Attacks
+ Optimal Control
+ Multi-objective Optimization
+ Attack Examples
+ Aiding a fleeing vehicle
+ Creating precise congestion patterns
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SmartRoads: Cyber-physical Security on
Traffic Networks

Traffic management has two components:
Physical sensors and traffic lights

demonstrated* in the wild.

Potential attack vectors numerous:
Broadcasting fake accident reports
Compromise of metering light network. *f:fi"*:"" =

Resiliency to attack through fault detection &
and modeling/sensing discrepancies. "

Page <> J OOOOOOOOOOOOOOOOOOOOOO
SSSSSSSSSSSSSSSSSSSS

Virtual control and estimation algorithms A\
Compromise of cyber traffic systems has been
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Compromise : complete takeover
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Compromise : spoofing the sensors
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Attack Description Access  Control  Complexity Cost
copper theft/clipping wires physical low low low
replacing a single sensor/actuator physical low low low
attacking a single sensor/actuator locality  low medium low
replacing a single control box physical medium medium medium
replacing a set of sensors/actuator physical medium medium medium
attacking a set of sensors/actuator locality  low medium low
replacing a corridor of control boxes physical  high medium medium
attacking a corridor of control boxes network  high high medium
attacking the control center network  high high high
spoofing GPS data network medium high medium
attacking navigation software network medium medium medium

x GPS dat mobile/radio connection
\‘-)):aa Waze, Google nav.
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SmartRoads Architecture
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SmartRoads Architecture
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SmartAmerica Scenario
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Coordinated Ramp Metering Attacks
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MAXIMIZE Attack Objective

Create Jam between Exits 4-6
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Achieve Free-flow Otherwise
(Stealthy Attack, avoid detection)
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Limit Onramp Queue Sizes

SUBJECT TO Traffic Dynamics

dp  df(p) _
ot i 0x =0
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+  Discretize continuous PDE dynamics (Godunov’s method)

Al
Hi,t pi,t - pi,t—l + ;(fmi;_1 - fouti,t_1) =0

+ Objective: State trackingminm= zi 2, [ Pi, — P, |
uelU ’ ’

p == C —

min J (u, p)
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Finite-horizon Optimal Control Problem

T-1 N N
11}161[1]1 Z Zf (s, Pict) +ZfT (us,, pi,7) \
t=1 i—1 i=1
Runni;rg Cost Termi;lgl Cost min J (u p)
. . Y
subject to system dynamics: ucU
0
Pi,0 =P;

= _ s.t. H (u,p) =0

Pit+1 =pPit + A_a:(G (Pie1t Pie1,ts Wit)

G (pit) Pit1,t> Uist))
Vi € [1,N],Vt € [1,T]

*Non-linear Performing gradient

% descent w/ finite-
Non-smooth differences infeasible

*Non-convex FORCES for large networks!
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in.J
min J (u, )

s.t. H(u,p)=0

Compute gradient: VuJ

dp
du

e —

Vaud =

Ju+ Jopu + N [H, + H,] = <

Page #>

OOOOOOOOOOOOOOOOOOOOOO
SSSSSSSSSSSSSSSSSSSS

:@ . |8J|di|
Hard

Eliminate — using system dynamics: Vul =
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Composable Goals

Reduce Travel Time

Limit Onramp Queues

Guarantee Wait-time
Fairness

GOAL

Complex/Evolving
Dynamics

Weather

Incidents/Accidents

Max-Onramp Queues

DYNAMICS
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Coordinated Freeway Control using
Adjoint Methods

Composable Goals

Reduce Travel Time

Limit Onramp Queues

Guarantee Wait-time Real-time Traffic Control System

Fairness
Online Traffic
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Coordinated Freeway Control using
Adjoint Methods

Composable Goals

Reduce Travel Time

RLHO, GRS Coordinated and Predictive

Guarantee Wait-time Real-time Traffic Control System

Fairness

Congestion Management

Online Traffic
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Dynamics Adjoint Optimizer |8 =5 c
= O O
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Prediction

Incidents/Accidents

Max-Onramp Queues

DYNAMICS

Size of network

Time horizon

Page <#>

5/15/2014



+  Compute gradient of constrained problem via adjoint

min J (u, p) Vud =
uel Ju +A\TH,
s.t. H (u,p) =0 st. HTA = —HT

+  Embed within gradient descent loop:
+ 1) Compute new state pk :H(pk ,uk) =0 [forward sim]
© 2) Compute gradientV J(p*,u")
+ 3) Update 5**1 =f(u1,...,uk,Vqu) [e.g. L-BFGS]
v 4)Lloop k<« k+1
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+ Goal: Achieve success on many conflicting goals
simultaneously

+ Solution: Scalarization
+ Objective -> linear combination of sub-objectives.

h

/>
f3
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Create Jam between Exits 4-6

Achieve Free-flow Otherwise
(Stealthy Attack, avoid detection)

Limit Onramp Queue Sizes

af,+a,f,+a,f,
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+ Use human expertise to find proper a, coefficients during
exploration

Decision
Optimal Control and CCISIO Preferences based on
Simulation Maker last simulation
Finite Horizon ( Interactive
Optimal Control Scalarisation
Scalar
Objective
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Interactive Optimization

Use human expertise to find proper a; coefficients

a)

Simulation

cl)
Nearby Sim

c2)
Nearby Sim

Hb)

Coefs

d)
History
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SmartRoads

f1 : Driver travel time Coef:65.875  Value : 20.27 Value after coef: 1.83e+2
f2 : Density behind Coef : 78.75 Value : -1.059 Value after coef: -5.70e+1
|

f3 : Trajectory Boundary Coef : 67.75 Value : -22.07 Value after coef: -2.59e+2
f4 : Total Travel Time Coef : 48.875 Value : 19840 Value after coef: 1.70e+2

Run simulation
f1 : Driver travel time f2 : Density behind 3 : Trajectory Boundary
Coef Result Coef Result Coef Result
0 54.693257343455514 0 -1.8680493049207153 0 -0.021855443893702198
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Box Attack Sim: 115 Freeway in San Diego

Create isolated, precise jam over predetermined time.

Balance between maximizing jam in “box” and minimizing
free-flow outside box.

f — af;am box + (1 o OC) «fclear outside box

I 1 820 7 18:40 [

=3 a=25 o=.9
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Box Attack Sim: 115 Freeway in San Diego
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Morse Code Attack on the Freeway

Use Box Objective is “building block” for more sophisticated
attacks

Example: Write Morse code on freeway with traffic jams

185

§ (Max) ] I | I
Y *=
N\ 8:15
s I — E—
§ ot A .
§ 8:32
\ I ] I I
‘\ .
= &

O™ 00 am g% 835 9:00 am’ AN 8:50

Space-time Diagram Time Slices along Freeway
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Morse Code Attack on the Freeway

SmartRoads: Hacking Freeway Congestion = Home  Freeway Speed Viewer  Act |: Jam Creator  Act Il: Morse Attack  Act Ill: Jam Painter

Type your initials and watch a "personalized" jam take place along the freeway.

\ /
~ 2
Play
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Create your Jam !

[Console Log]

pirate@hackysack.hack>> Your jam is ready to be simulated, take a close look
pirate@hackysack.hack>> Taking control of the freeway...
pirate@hackysack.hack>> Converting to morse...

pirate@hackysack.hack>> Analyzing your initials...
pirate@hackysack.hack>> Simulation loaded
pirate@hackysack.hack>> *** Demo 2 : write your initials ***

(=, FORCES
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Drawing Q On the Freeway

Target Thresholded Total Travel Time Optimal Metering
Image Bitmap Coefficients (X =-.6) Rates for Coefs.
00X 00000 -6 0.4 —.6 ..
XXX 0000 6 =6 —.6 . V‘V.Wh
—3| c0oo0oo0oo0oxo0ob—|lo0.40.40.4 .. HHH
X X X X X X X 6 —-.6 —.6 ... L.JLJL.J
X X X X X X X -.0 .6 —.0 ...

SmartRoads: Hacking Freeway Congestion =~ Home  Freeway Actl: Jam Creator  Actl: Morse Attack  Act lil: Jam Painter

& Draw Space/Time Diagram

a precision
< 7
4 > Pigy
[ A
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Attack Example: CATCH ME IF YOU CAN

Attacker wishes to escape vehicles chasing him.

Three objectives:
f1 Maximize congestion behind driver
f2 Maximize speed change directly behind driver trajectory
f3 Minimize travel time otherwise (avoid suspicion)

% )

Coefs —

Berkeley

UNIVERSITY OF CALIFORNIA



Attack Example: CATCH ME IF YOU CAN
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“ Explore @, space, creating a “representative” subset of
Pareto solutions

Normalized
objective

values for fl

(b) Scaled values of fi (c) Scaled values of f> (d) Scaled values of f3
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+ Risk To Reward Ratio
+ How costly to society are the attacks?
+ How costly is the implementation of the attacks?

+ Connected Vehicles/Infrastructure Security
+ What vulnerabilities exist when vehicles are in the loop?
“ Prevention

+ How can we leverage knowledge traffic dynamics to
prevent attacks?
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Questions?
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